求直线x=0,x=2,y=0与曲线y=x²所围成的曲边梯形的面积。

 我来答
岭下人民
2014-03-24 · TA获得超过22.8万个赞
知道小有建树答主
回答量:3.5万
采纳率:97%
帮助的人:2229万
展开全部
定积分的几何意义:
就是在区间[a,b]内切分n份,n趋于正无穷,来计算小长方形面积之和。
即直线X=0,X=2,y=0与曲线y=x^2所围成的曲边梯形的面积为y=x^2在[0,2]的定积分。
即S=∫x^2dx|[0,2]=x^3|x=2-x^3|x=0=8/3
追问
我们用的不是定积分概念
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式