推荐于2017-11-26
展开全部
十字相乘法
这种方法有两种情况。
①x^2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) .
②kx^2+mx+n型的式子的因式分解
如果如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d).
图示如下:
·a b
· ×
·c d
例如:因为
·1 -3
· ×
·7 2
且2-21=-19,
所以7x^2-19x-6=(7x+2)(x-3).
十字相乘法口诀:首尾分解,交叉相乘,求和凑中
这种方法有两种情况。
①x^2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) .
②kx^2+mx+n型的式子的因式分解
如果如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d).
图示如下:
·a b
· ×
·c d
例如:因为
·1 -3
· ×
·7 2
且2-21=-19,
所以7x^2-19x-6=(7x+2)(x-3).
十字相乘法口诀:首尾分解,交叉相乘,求和凑中
2013-08-20
展开全部
十字相乘法能把某些二次三项式ax2+bx+c(a≠0)分解因式。这种方法的关健是把二次项的系数a分解成两个因数a1,a2的积a1�6�1a2,把常数项c分解成两个因数c1,c2的积c1�6�1c2,并使a1c2+a2c1正好是一次项系数b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。
例:x2+2x-15
分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)
(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。
=(x-3)(x+5)
例:x2+2x-15
分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)
(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。
=(x-3)(x+5)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
初中数学十字相乘法公式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-08-20
展开全部
十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解。
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
5、十字相乘法解题实例:
1)、 用十字相乘法解一些简单常见的题目
例1把m�0�5+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
解:因为 1 -2
1 ╳ 6
所以m�0�5+4m-12=(m-2)(m+6)
例2把5x�0�5+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题
解: 因为 1 2
5 ╳ -4
所以5x�0�5+6x-8=(x+2)(5x-4)
例3解方程x�0�5-8x+15=0
分析:把x�0�5-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解: 因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x�0�5-5x-25=0
分析:把6x�0�5-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解: 因为 2 -5
3 ╳ 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x�0�5-67xy+18y�0�5分解因式
分析:把14x�0�5-67xy+18y�0�5看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y�0�5可分为y.18y , 2y.9y , 3y.6y
解: 因为 2 -9y
7 ╳ -2y
所以 14x�0�5-67xy+18y�0�5= (2x-9y)(7x-2y)
例6 把10x�0�5-27xy-28y�0�5-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x�0�5-27xy-28y�0�5-x+25y-3
=10x�0�5-(27y+1)x -(28y�0�5-25y+3) 4y -3
7y ╳ -1
=10x�0�5-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y�0�5-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x�0�5-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]
解法二、10x�0�5-27xy-28y�0�5-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
说明:在本题中先把10x�0�5-27xy-28y�0�5用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
5、十字相乘法解题实例:
1)、 用十字相乘法解一些简单常见的题目
例1把m�0�5+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
解:因为 1 -2
1 ╳ 6
所以m�0�5+4m-12=(m-2)(m+6)
例2把5x�0�5+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题
解: 因为 1 2
5 ╳ -4
所以5x�0�5+6x-8=(x+2)(5x-4)
例3解方程x�0�5-8x+15=0
分析:把x�0�5-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解: 因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x�0�5-5x-25=0
分析:把6x�0�5-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解: 因为 2 -5
3 ╳ 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x�0�5-67xy+18y�0�5分解因式
分析:把14x�0�5-67xy+18y�0�5看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y�0�5可分为y.18y , 2y.9y , 3y.6y
解: 因为 2 -9y
7 ╳ -2y
所以 14x�0�5-67xy+18y�0�5= (2x-9y)(7x-2y)
例6 把10x�0�5-27xy-28y�0�5-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x�0�5-27xy-28y�0�5-x+25y-3
=10x�0�5-(27y+1)x -(28y�0�5-25y+3) 4y -3
7y ╳ -1
=10x�0�5-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y�0�5-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x�0�5-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]
解法二、10x�0�5-27xy-28y�0�5-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
说明:在本题中先把10x�0�5-27xy-28y�0�5用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询