设w>0,若函数f[x]=2sinwx在[-π\3,π\4] 上单调递增,则w的取值范围是
1个回答
展开全部
设w>0,若函数f[x]=2sinwx在[-π\3,π\4]上单调递增,则w的取值范围是
解析:∵函数f[x]=2sinwx(w>0)在[-π\3,π\4]上单调递增
f(x)单调增区间:wx∈[2kπ-π/2, 2kπ+π/2]==>x∈[2kπ/w-π/(2w),2kπ/w+π/(2w)]
区间[-π/3,π/4]包含于[2kπ/w-π/(2w),2kπ/w+π/(2w)]
∴-π/(2w)<=-π/3==>-1/(2w)<=-1/3==>w<3/2
π/(2w)>=π/4==>1/(2w)>=1/4==>w<=2
取二者交w<=3/2
∴w的取值范围是0< w<=3/2
解析:∵函数f[x]=2sinwx(w>0)在[-π\3,π\4]上单调递增
f(x)单调增区间:wx∈[2kπ-π/2, 2kπ+π/2]==>x∈[2kπ/w-π/(2w),2kπ/w+π/(2w)]
区间[-π/3,π/4]包含于[2kπ/w-π/(2w),2kπ/w+π/(2w)]
∴-π/(2w)<=-π/3==>-1/(2w)<=-1/3==>w<3/2
π/(2w)>=π/4==>1/(2w)>=1/4==>w<=2
取二者交w<=3/2
∴w的取值范围是0< w<=3/2
追问
为什么∵函数f[x]=2sinwx(w>0)在[-π\3,π\4]上单调递增
所以(x)单调增区间:wx∈[2kπ-π/2, 2kπ+π/2]==>x∈[2kπ/w-π/(2w),2kπ/w+π/(2w)]
追答
这二者之间,没有因果关系,后面求的是函数f(x)单调增区间
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询