设数列{an}的前n项和为Sn,已知1/S+1/S2+…1/Sn=n/n+1,设bn=(1/2)^
an,数列{bn}的前n项和为Tn,若对一切n∈N*,均有Tn∈(1/m,m^2-6m+16/3),求实数m的取值范围...
an,数列{bn}的前n项和为Tn,若对一切n∈N*,均有Tn∈(1/m,m^2-6m+16/3),求实数m的取值范围
展开
展开全部
根据题意:1/Sn=n/(n+1)-(n-1)/n=1/(n(n+1))
1/Sn-1=(n-1)/n-(n-2)/(n-1)=1/(n(n-1))
Sn=n(n+1) Sn-1=n(n-1)
an=Sn-Sn-1=2n
1/a1=1/S1=1/(1+1) a1=2 a1也符合
∴通项公式为 an=2n
b1=1/4 bn/bn-1=(1/2)^2n/(1/2)^(2n-2)=1/4
∴bn为首项为1/4,又公比为1/4的等比数列
Tn=1/4x(1-(1/4)^n)/(1-1/4)=1/3x(1-(1/4)^n)
n=1有最小值1/4 n为正无穷时,Tn最多为1/3,所以Tn<1/3
∴ 1/m<1/4 m^2-6m+16/3>=1/3
第一个 m<0或m>4 第二个 m<=1或m>=5
得出交集 m<0或m>=5
好评,,谢谢
1/Sn-1=(n-1)/n-(n-2)/(n-1)=1/(n(n-1))
Sn=n(n+1) Sn-1=n(n-1)
an=Sn-Sn-1=2n
1/a1=1/S1=1/(1+1) a1=2 a1也符合
∴通项公式为 an=2n
b1=1/4 bn/bn-1=(1/2)^2n/(1/2)^(2n-2)=1/4
∴bn为首项为1/4,又公比为1/4的等比数列
Tn=1/4x(1-(1/4)^n)/(1-1/4)=1/3x(1-(1/4)^n)
n=1有最小值1/4 n为正无穷时,Tn最多为1/3,所以Tn<1/3
∴ 1/m<1/4 m^2-6m+16/3>=1/3
第一个 m<0或m>4 第二个 m<=1或m>=5
得出交集 m<0或m>=5
好评,,谢谢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询