设数列An的前n项和为Sn,且满足Sn=2- An,(n=1.2.3....) (1)求数列An的
设数列An的前n项和为Sn,且满足Sn=2-An,(n=1.2.3....)(1)求数列An的通项公式(2)若数列Bn满足B1=1.且Bn+1=Bn+An,求数列Bn的通...
设数列An的前n项和为Sn,且满足Sn=2- An,(n=1.2.3....) (1)求数列An的通项公式 (2)若数列Bn满足B1=1.且Bn+1=Bn+An,求数列Bn的通项公式
展开
1个回答
展开全部
Sn=2-an (1)
put n=1
a1=1
S(n-1)=2-a(n-1) (2)
(1) -(2)
an = -an+a(n-1)
an/a(n-1) = 1/2
an/a1 = (1/2)^(n-1)
an = (1/2)^(n-1)
b(n+1) = bn +an
b(n+1)-bn = (1/2)^(n-1)
bn -b(n-1) = (1/2)^(n-2)
bn-b1 = 1+(1/2)+..+(1/2)^(n-2)
= 2(1-(1/2)^(n-1))
bn = 1+ 2(1-(1/2)^(n-1))
= 3 - (1/2)^(n-2)
cn= n(3-bn)
= n(1/2)^(n-2)
=2(n.(1/2)^(n-1))
consider
1+x+x^2+.+x^n = (x^(n+1) -1)/(x-1)
1+2x+..+nx^(n-1) = [(x^(n+1) -1)/(x-1)]'
= [nx^(n+1) -(n+1)x^n +1]/(x-1)^2
put x= 1/2
1.(1/2)^0+ 2(1/2)+..+n(1/2)^(n-1)
=4[n(1/2)^(n+1) -(n+1)(1/2)^n +1]
=4- (2n+4)(1/2)^n
Tn = c1+c2+..+cn
=2[4- (2n+4)(1/2)^n]
= 8 -(n+2)(1/2)^(n-2)
put n=1
a1=1
S(n-1)=2-a(n-1) (2)
(1) -(2)
an = -an+a(n-1)
an/a(n-1) = 1/2
an/a1 = (1/2)^(n-1)
an = (1/2)^(n-1)
b(n+1) = bn +an
b(n+1)-bn = (1/2)^(n-1)
bn -b(n-1) = (1/2)^(n-2)
bn-b1 = 1+(1/2)+..+(1/2)^(n-2)
= 2(1-(1/2)^(n-1))
bn = 1+ 2(1-(1/2)^(n-1))
= 3 - (1/2)^(n-2)
cn= n(3-bn)
= n(1/2)^(n-2)
=2(n.(1/2)^(n-1))
consider
1+x+x^2+.+x^n = (x^(n+1) -1)/(x-1)
1+2x+..+nx^(n-1) = [(x^(n+1) -1)/(x-1)]'
= [nx^(n+1) -(n+1)x^n +1]/(x-1)^2
put x= 1/2
1.(1/2)^0+ 2(1/2)+..+n(1/2)^(n-1)
=4[n(1/2)^(n+1) -(n+1)(1/2)^n +1]
=4- (2n+4)(1/2)^n
Tn = c1+c2+..+cn
=2[4- (2n+4)(1/2)^n]
= 8 -(n+2)(1/2)^(n-2)
追问
能写在纸上发我吗?。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询