设f(x)是定义在R上的偶函数,其函数图像关于直线x=1对称,对任意x1x2属于(0,0.5),都有f(x1+x2)=f(x1)f(x2)
1个回答
2013-08-23
展开全部
分析:本题主要考查导数的运算法则及函数的性质.利用f(x)g(x)构造一个新函数 (x)=f(x)g(x),利用 (x)的性质解决问题.
解:设 (x)=f(x)g(x),则 ′(x)=f(x)g′(x)+f′(x)g(x)>0.
∴ (x)在(-∞,0)上是增函数且 (-3)=0.
又∵f(x)为奇函数,g(x)为偶函数, ∴ (x)=f(x)g(x)为奇函数.
∴ (x)在(0,+∞)上也是增函数且 (3)=0.
当x<-3时, (x)< (-3)=0,即f(x)g(x)<0;
当-3<x<0时, (x)> (-3)=0,即f(x)g(x)>0.
同理,当0<x<3时, f(x)g(x)<0;
当x>3时,f(x)g(x)>0.
∴f(x)g(x)<0的解集为(-∞,-3)∪(0,3).
答案:(-∞,-3)∪(0,3)
解:设 (x)=f(x)g(x),则 ′(x)=f(x)g′(x)+f′(x)g(x)>0.
∴ (x)在(-∞,0)上是增函数且 (-3)=0.
又∵f(x)为奇函数,g(x)为偶函数, ∴ (x)=f(x)g(x)为奇函数.
∴ (x)在(0,+∞)上也是增函数且 (3)=0.
当x<-3时, (x)< (-3)=0,即f(x)g(x)<0;
当-3<x<0时, (x)> (-3)=0,即f(x)g(x)>0.
同理,当0<x<3时, f(x)g(x)<0;
当x>3时,f(x)g(x)>0.
∴f(x)g(x)<0的解集为(-∞,-3)∪(0,3).
答案:(-∞,-3)∪(0,3)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询