问题:如图,在正方形ABCD和正方形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.试探

问题:如图,在正方形ABCD和正方形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.试探究PG与PC的位置关系及PGPC的值.小聪同学的思路是... 问题:如图,在正方形ABCD和正方形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.试探究PG与PC的位置关系及 PG PC 的值.小聪同学的思路是:延长GP 交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)写出上面问题中线段PG与PC的位置关系及 PG PC 的值;(要有具体过程)(2)若将条件“正方形ABCD和正方形BEFG”改为“矩形ABCD≌矩形BEFG”其它条件不变,画图试探求线段PG与PC的关系. 展开
 我来答
天堂月丶鉁菾
推荐于2016-09-27 · 超过60用户采纳过TA的回答
知道答主
回答量:125
采纳率:100%
帮助的人:56.4万
展开全部


(1)如图1,当点A,B,E在同一条直线上时,有结论:PG⊥PC,PG=PC.
延长GP交DC与点H.
∵P是线段DF的中点,
∴FP=DP.
由题意知DC AE,
∴∠GFP=∠HDP,
∵∠GPF=∠HPD,
∴△GFP≌△HDP,
∴GP=HP,GF=HD,
∵四边形ABCD、BEFG是正方形,
∴CD=CB,GB=GF.
∴CH=CG,
又∵∠HCG=90°,GP=HP,
∴PG⊥PC,PG=PC;

(2)如图2,当点A,B,E在同一条直线上时,有结论:PG⊥PC,PG=PC
延长GP交DC延长线于点H.


∵P是线段DF的中点,
∴FP=DP.
由题意可知DC GF,
∴∠GFP=∠HDP,
∵∠GPF=∠HPD,
∴△GFP≌△HDP,
∴GP=HP,GF=HD,
∵矩形ABCD≌矩形BEFG,
∴CD=GB,CB=GF,
∴CH=CG
又∵∠HCG=90°,GP=HP,
∴PG⊥PC,PG=PC.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式