已知数列{an}的前n项和为Sn=3n-n2,n∈N*.(Ⅰ)求通项公式an;(Ⅱ)设bn=2n,求数列{anbn}的前n项和Tn
已知数列{an}的前n项和为Sn=3n-n2,n∈N*.(Ⅰ)求通项公式an;(Ⅱ)设bn=2n,求数列{anbn}的前n项和Tn....
已知数列{an}的前n项和为Sn=3n-n2,n∈N*.(Ⅰ)求通项公式an;(Ⅱ)设bn=2n,求数列{anbn}的前n项和Tn.
展开
1个回答
展开全部
(Ⅰ)∵数列{an}的前n项和为Sn=3n-n2,n∈N*,
∴a1=S1=3-1=2,
当n≥2时,
an=Sn-Sn-1
=(3n-n2)-[3(n-1)-(n-1)2]
=4-2n.
当n=1时,4-2n=2=a1,
∴an=4-2n,n∈N*.
(Ⅱ)设cn=anbn,
∵an=4-2n,bn=2n,
∴cn=(4-2n)?2n,
∴Tn=2?2+0?22+(-2)?23+(-4)?24+…+(4-2n)?2n,①
2Tn=2?22+0?23+(-2)?24+…+(4-2n)?2n+1,②
②-①,得:
Tn=-2?2+2?22+2?23+2?24+…+2?2n+(4-2n)?2n+1
=-4+
+(4-2n)?2n+1
=-4+2n+2-8+2n+3-n?2n+2
=(3-n)?2n+2-12.
∴a1=S1=3-1=2,
当n≥2时,
an=Sn-Sn-1
=(3n-n2)-[3(n-1)-(n-1)2]
=4-2n.
当n=1时,4-2n=2=a1,
∴an=4-2n,n∈N*.
(Ⅱ)设cn=anbn,
∵an=4-2n,bn=2n,
∴cn=(4-2n)?2n,
∴Tn=2?2+0?22+(-2)?23+(-4)?24+…+(4-2n)?2n,①
2Tn=2?22+0?23+(-2)?24+…+(4-2n)?2n+1,②
②-①,得:
Tn=-2?2+2?22+2?23+2?24+…+2?2n+(4-2n)?2n+1
=-4+
8(1-2n-1) |
1-2 |
=-4+2n+2-8+2n+3-n?2n+2
=(3-n)?2n+2-12.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询