f(x)=6x²+x+2的极值
2个回答
展开全部
1二十四分之四十七
2求解过程:
根据一元二次函数的性质可知:
原函数是U形曲线,有最低点。
根据极点公式可知,原函数在x=负十二分之一 处,取得最小值为二十四分之四十七。
附:
1二次函数(quadratic function)的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次, 二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
二次函数表达式y=ax²+bx+c(且a≠0)的定义是一个二次多项式(或单项式)。
2一般式:y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。
顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数)。
交点式(与x轴):y=a(x-x1)(x-x2)(a≠0,a、且x1、x2为常数)x1、x2为二次函数与x轴的两交点。
等高式:y=a(x-x1)(x-x2)+m(a≠0,且过(x1、m)(x2、m)为常数)x1、x2为二次函数与x轴的两交点。
2求解过程:
根据一元二次函数的性质可知:
原函数是U形曲线,有最低点。
根据极点公式可知,原函数在x=负十二分之一 处,取得最小值为二十四分之四十七。
附:
1二次函数(quadratic function)的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次, 二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
二次函数表达式y=ax²+bx+c(且a≠0)的定义是一个二次多项式(或单项式)。
2一般式:y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。
顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数)。
交点式(与x轴):y=a(x-x1)(x-x2)(a≠0,a、且x1、x2为常数)x1、x2为二次函数与x轴的两交点。
等高式:y=a(x-x1)(x-x2)+m(a≠0,且过(x1、m)(x2、m)为常数)x1、x2为二次函数与x轴的两交点。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询