已知函数f(x)=x^2-4-k|x-2| 5

已知函数f(x)=x^2-4-k|x-2|1、若函数f(x)为偶函数,求k的值。2、求函数f(x)在区间[0,4]上的最大值。3、若f(x)有且只有1个零点,求实数k的取... 已知函数f(x)=x^2-4-k|x-2|
1、若函数f(x)为偶函数,求k的值。
2、求函数f(x)在区间[0,4]上的最大值。
3、若f(x)有且只有1个零点,求实数k的取值范围。
展开
810911109
2014-01-12 · TA获得超过499个赞
知道小有建树答主
回答量:156
采纳率:50%
帮助的人:60.5万
展开全部
已知函数f(x)=x2-4-k|x-2|.
(1)若函数y=f(x)为偶函数,求k的值;
(2)求函数y=f(x)在区间[0,4]上的最大值;
(3)若函数y=f(x)有且仅有一个零点,求实数k的取值范围.
答案
解:(1)因为y=f(x)为偶函数,所以f(-1)=f(1),解得k=0,
经检验k=0符合题意. …(2分)
(2)当x∈[0,4]时,f(x)=,
因为y=f(x)在区间[0,4]上图象由两段抛物线段组成,且这两个抛物线开口均向上,
所以其最大值只可能是f(0)、f(2)、f(4)其中之一. …(4分)
又f(0)=-2k-4,f(2)=0,f(4)=12-2k,显然f(4)>f(0).
所以当k<6时,所求最大值为f(4)=12-2k;
当k≥6时,所求最大值为f(2)=0.…(6分)
(3)由题意得,方程x2-4-k|x-2|=0有且仅有一个解,显然,x=2已是该方程的解.…(8分)
当x≥2时,方程变为(x-2)( x+2-k)=0;
当x<2时,方程变为(x-2)( x+2+k)=0.
从而关于x的方程x+2-k=0(x≥2)有且仅有一个等于2的解或无解,且x+2+k=0(x<2)无解.
又x=2时,k=4,此时x=-6也是方程的解,不合题意.
所以关于x的方程x+2-k=0(x≥2)无解,且x+2+k=0(x<2)无解.
所以,k<4且k≤-4.
综上,k≤-4,即实数k的取值范围为(-∞,-4].…(10分)
解析
分析:(1)因为y=f(x)为偶函数,所以f(-1)=f(1),由此解得k的值.
(2)当x∈[0,4]时,f(x)=,所以其最大值只可能是f(0)、f(2)、f(4)其中之一.再由f(4)>f(0),可得函数的最大值.
(3)由题意得,方程x2-4-k|x-2|=0有且仅有一个解,显然,x=2已是该方程的解.故关于x的方程x+2-k=0(x≥2)有且仅有一个等于2的解或无解,且x+2+k=0(x<2)无解,从而求得实数k的取值范围.
点评:本题主要考查二次函数的性质应用,函数的零点的定义,函数的奇偶性,体现了分类讨论和等价转化的数学思想,属于中档题.
百度网友c816547
2013-08-24 · 超过12用户采纳过TA的回答
知道答主
回答量:38
采纳率:0%
帮助的人:34.7万
展开全部
1、f(x)=x^2-4-k|x-2| f(-x)=x^2-4-k|-x-2| 因f(x)=f(-x)则k|x-2|=k|-x-2| ;因|x-2|=|-x-2|只在x=0时成立,所以只能k=0
2、【0,2】f(x)=x^2-4+kx-2k
追问
第三个问呢?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式