初二的数学题,帮忙解答一下
,在直角三角形ABC中,角C=90度,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6根号2,求另一直角边BC的长...
,在直角三角形ABC中,角C=90度,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6根号2,求另一直角边BC的长
展开
2013-08-25
展开全部
解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,
∵四边形ABDE为正方形,
∴∠AOB=90°,OA=OB,
∴∠AOM+∠BOF=90°,
又∠AMO=90°,∴∠AOM+∠OAM=90°,
∴∠BOF=∠OAM,
在△AOM和△BOF中,
∠AMO=∠OFB=90°∠OAM=∠BOFOA=OB,
∴△AOM≌△BOF(AAS),
∴AM=OF,OM=FB,
又∠ACB=∠AMF=∠CFM=90°,
∴四边形ACFM为矩形,
∴AM=CF,AC=MF=5,
∴OF=CF,
∴△OCF为等腰直角三角形,
∵OC=62,
∴根据勾股定理得:CF2+OF2=OC2,
解得:CF=OF=6,
∴FB=OM=OF-FM=6-5=1,
则BC=CF+BF=6+1=7.
故答案为:7.
解法二:如图2所示,
过点O作OM⊥CA,交CA的延长线于点M;过点O作ON⊥BC于点N.
易证△OMA≌△ONB,∴OM=ON,MA=NB.
∴O点在∠ACB的平分线上,∴△OCM为等腰直角三角形.
∵OC=62,∴CM=6.
∴MA=CM-AC=6-5=1,
∴BC=CN+NB=6+1=7.
2013-08-25
展开全部
解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,
∵四边形ABDE为正方形,
∴∠AOB=90°,OA=OB,
∴∠AOM+∠BOF=90°,
又∠AMO=90°,∴∠AOM+∠OAM=90°,
∴∠BOF=∠OAM,
在△AOM和△BOF中,
∠AMO=∠OFB=90°∠OAM=∠BOFOA=OB,
∴△AOM≌△BOF(AAS),
∴AM=OF,OM=FB,
又∠ACB=∠AMF=∠CFM=90°,
∴四边形ACFM为矩形,
∴AM=CF,AC=MF=5,
∴OF=CF,
∴△OCF为等腰直角三角形,
∵OC=6根号2,
∴根据勾股定理得:CF2+OF2=OC2,
解得:CF=OF=6,
∴FB=OM=OF-FM=6-5=1,
则BC=CF+BF=6+1=7.
故答案为:7.
∵四边形ABDE为正方形,
∴∠AOB=90°,OA=OB,
∴∠AOM+∠BOF=90°,
又∠AMO=90°,∴∠AOM+∠OAM=90°,
∴∠BOF=∠OAM,
在△AOM和△BOF中,
∠AMO=∠OFB=90°∠OAM=∠BOFOA=OB,
∴△AOM≌△BOF(AAS),
∴AM=OF,OM=FB,
又∠ACB=∠AMF=∠CFM=90°,
∴四边形ACFM为矩形,
∴AM=CF,AC=MF=5,
∴OF=CF,
∴△OCF为等腰直角三角形,
∵OC=6根号2,
∴根据勾股定理得:CF2+OF2=OC2,
解得:CF=OF=6,
∴FB=OM=OF-FM=6-5=1,
则BC=CF+BF=6+1=7.
故答案为:7.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
箐优网找找!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询