设二次函数f(x)满足f(x-2)=f(-x-2),且图像在y轴上的截距为1,被x轴截得的线段长为2√2,求f(x)的解析式

仁新Q3
2013-08-26 · TA获得超过1.9万个赞
知道大有可为答主
回答量:4219
采纳率:85%
帮助的人:1756万
展开全部
因为f(x-2)=f(-x-2)

所以对称轴为x=-2

又因为函数在x轴上截得的线段长为2√2

所以可知函数与x轴的两个交点分别为(-2-√2 , 0 )和(-2+√2 , 0)

所以设该二次函数为y=a[x - (-2-√2)][x - (-2+√2)]

即y=a(x + 2+√2)(x+2-√2)

又因为图象在y轴上的截距为1, 即经过(0,1)

代入得1=a(2+√2)(2-√2),得a=1/2

所以y=(1/2)(x + 2+√2)(x+2-√2)

即y=x^2 /2 + 2x + 1

注:^表示几次方,如x^2 /2表示二分之x的平方
追问
为什么因为f(x-2)=f(-x-2)

所以对称轴为x=-2
追答
-2为x轴上-2这个数表示的点,
二次函数f(x)满足f(x-2)=f(-x-2),即对任意数x都成立
x-2=(-2)+x
-x-2=(-2)-x
这表示-2上任意加一个数,与-2减同一个数,所对应的函数值一定相等,这就是对称哦!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式