频率直方图的频率怎么求,是频数比组距吗?
频率直方图的频率=频数/组距。
在直角坐标系中,横轴表示样本数据的连续可取数值,按数据的最小值和最大值把样本数据分为m组,使最大值和最小值落在开区间(a,b)内,a略小于样本数据的最小值,b略大于样本数据的最大值。
组距为d=(b-a)/m,各数据组的边界范围按左闭右开区间,如[a,a+d),[a+d,a+2d),……[a+(m-1)d,b)。
纵轴表示频率除以组距(落在各组样本数据的个数称为频数,频数除以样本总个数为频率)的值,以频率和组距的商为高、组距为底的矩形在直角坐标系上来表示。
扩展资料
直方图的纵轴坐标反映的是考察对象的频率与组距之比,只有当组距相同时,才可以用长方形的高即纵坐标的数值(即标值)表示频率(频数)的大小。由于科技期刊论文中的直方图多数都采用相同的组距,所以研究仅讨论等组距的情况。
纵轴坐标名称采用频数(落在不同小组中的数据数量称为该组的频数)或频率(频数与样本总数的比称为该考察对象的频率)来表示。各分组的频数之和等于这组数据的样本总数。
0<fi≤100且∑fi=100。其中:f为频率,用百分数表示;i为分组的数量,i=1,2,…,m。频率大小反映各组频数在数据样本总数中所占的比例。
如果是频率分布直方图,纵轴坐标标目采用“频率/%”,如果是频数分布直方图,则采用“频数”。
纵轴坐标标目是“频率/%”,那么∑fi=100。如果是“频数”,那么各统计对象的频数之和(∑ni=n)必须等于样本数据总数n。通过这种方法来初步判定作者给出的是频率还是频数分布直方图。
参考资料来源:百度百科-频率分布直方图
2024-11-13 广告
频率=频数/数据总数。
频率的性质
1、当重复试验的次数n逐渐增大时,频率fn(A)呈现出稳定性,逐渐稳定于某个常数,这个常数就是事件A的概率.这种“频率稳定性”也就是通常所说的统计规律性。
2、频率有如下性质:
(1)非负性:0小于等于fn(A)小于等于1
(2)规范性:fn(Ω)=1 (注:Ω表示样本空间)
(3)可加性
频率分布直方图能清楚显示各组频数分布情况又易于显示各组之间频数的差别。它主要是为了将我们获取的数据直观、形象地表示出来,让我们能够更好了解数据的分布情况,因此其中组距、组数起关键作用。
分组过少,数据就非常集中;分组过多,数据就非常分散,这就掩盖了分布的特征。当数据在100以内时,一般分5~12组为宜。
直方图用长方形的面积表示频数,长方形的面积越大,表示这组数据的频数越大;只有当长方形的底宽都相等即组距相等时,才可以用长方形的高表示频数的大小。条形图用条形的高度表示频数的大小。
扩展资料
频率在随机事件在n次试验中发生m次的相对频次m/n。一般物理科学中频率指每秒中的振动次数,可以是随机的,也可以是确定性的。
在一定条件下,对所研究的对象进行观察或测验,每实现一次条件组,称为一次试验。其结果称为事件。在一次试验中,可能发生也可能不发生的事件称为随机事件。
随机事件 A发生的概率p(A)是该事件出现的可能性大小的度量。其数值在0与1之间。在一定条件下进行试验,如果事件A不可能发生,则p(A)=0;如果事件A必然发生,则p(A)=1。随着试验次数n的增大,频率接近于概率的可能性也越大。
参考资料来源:百度百科-频率
在直角坐标系中,横轴表示样本数据的连续可取数值,按数据的最小值和最大值把样本数据分为m组,使最大值和最小值落在开区间(a,b)内,a略小于样本数据的最小值,b略大于样本数据的最大值。
组距为d=(b-a)/m,各数据组的边界范围按左闭右开区间,如[a,a+d),[a+d,a+2d),……[a+(m-1)d,b)。
纵轴表示频率除以组距(落在各组样本数据的个数称为频数,频数除以样本总个数为频率)的值,以频率和组距的商为高、组距为底的矩形在直角坐标系上来表示。
扩展资料
直方图的纵轴坐标反映的是考察对象的频率与组距之比,只有当组距相同时,才可以用长方形的高即纵坐标的数值(即标值)表示频率(频数)的大小。由于科技期刊论文中的直方图多数都采用相同的组距,所以研究仅讨论等组距的情况。
纵轴坐标名称采用频数(落在不同小组中的数据数量称为该组的频数)或频率(频数与样本总数的比称为该考察对象的频率)来表示。各分组的频数之和等于这组数据的样本总数。
0<fi≤100且∑fi=100。其中:f为频率,用百分数表示;i为分组的数量,i=1,2,…,m。频率大小反映各组频数在数据样本总数中所占的比例。
如果是频率分布直方图,纵轴坐标标目采用“频率/%”,如果是频数分布直方图,则采用“频数”。
纵轴坐标标目是“频率/%”,那么∑fi=100。如果是“频数”,那么各统计对象的频数之和(∑ni=n)必须等于样本数据总数n。通过这种方法来初步判定作者给出的是频率还是频数分布直方图。
参考资料来源:搜狗百科-频率分布直方图