一道数学题,三角函数

三角形ABC中,9a2+9b2-19c2=0,求tanAtanB/(tanA+tanB)tanC... 三角形ABC中,9a2+9b2-19c2=0,求 tanAtanB/(tanA+tanB)tanC 展开
 我来答
匿名用户
2013-08-28
展开全部
因为9a^2+9b^2-19c^2=0,所以a^2+b^2=(19/9)c^2
tanAtanB/[(tanA+tanB)tanC]
=cotC/(cotA+cotB)
cotA+cotB=cosA/sinA+cosB/sinB
=(cosAsinB+sinAcosB)/(sinAsinB)
=sin(A+B)/(sinAsinB)=sinC/(sinAsinB)
cotC=cosC/sinC
所以原式=cosC*sinA*sinB/(sinC)^2
由正弦定理,sinA*sinB/(sinC)^2=sinA/sinC*sinB/sinC=ab/c^2
由余弦定理,cosC=(a^2+b^2-c^2)/2ab=5(c^2)/9ab
所以原式=5(c^2)/9ab*ab/c^2=5/9
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-08-28
展开全部
切化弦,这是很多数学问题的解决思想,步骤就不写了,前面的人给了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式