
用数学归纳法证明:证明:对大于2的一切正整数n
证明:对大于2的一切正整数n,下列不等式成立(1+2+3+…+n)(1+1/2+1/3+…+1/n)≥n^2+n-1...
证明:对大于2的一切正整数n,下列不等式成立(1+2+3+…+n)(1+ 1/2 + 1/3 +…+ 1/n) ≥ n^2+n-1
展开
2个回答
展开全部
(1).当N=3时,左边=(1+2+3)*(1+1/2+1/3)=11
右边=3^2+3-1=11
左边=右边,原式成立
(2)设当N=K时原式成立,有(1+2+3+……+K)(1+1/2+1/3+……+1/K)≥K^2+K-1
当=k+1时(1+2+3+...+k+k+1)(1+1/2+1/3+....+1/k+1/(k+1))=
(1+2+3+...+k)(1+1/2+1/3+...+1/k)+(k+1)(1+1/2+1/3+...)+1/(k+1)(1+2+3+...+k)+1>
k^2+k-1+(k+1)+(k+1)/2+k(k+1)/2(k+1)+1>
k^2+2k+1+k+1-1=(k+1)^2+(k+1)-1
即当n=k+1时,不等式成立
由(1)(2)得,当N为正整数数且大于2时,原式成立
(1+2+3+...+k)(1+1/2+1/3+...+1/k)+ (k+1)(1+1/2+1/3+...)+1/(k+1)(1+2+3+...+k) +1>
k^2+k-1+ (k+1)+(k+1)/2+ k(k+1)/2(k+1) +1>
k^2+2k+1+k+1-1=(k+1)^2+(k+1)-1 2007-7-21 证明:
(1)当n=1时n^3+5n=6能被6整除
(2)设n=k时k^3+5k能被6整除,则当n=k+1时
(k+1)^3+5(k+1)=k^3+5k+3(k^2+k)+6
因为k^3+5k能被6整除 且6也被6整除
现在只要证明3(k^2+k)能被6整除即可
因为k为自然数 当k为偶数时k^2+k=偶数3* (k^2+k)能被6整除
当k为奇数时k^2=奇数 k+k^2=偶数 所以(k^2+k) 也能被6整除
所以3(k^2+k)能被6整除
所以(k+1)^3+5(k+1)能被6整除
由1、2可得N的3次方加5N能被6整除
瞎整一下 2007-7-19 (这道题应该再加一句,N≥3)
证明:
(1).当N=3时,左边=(1+2+3)*(1+1/2+1/3)=11
右边=3^2+3-1=11
左边=右边,原式成立
当N=4时,左边=(1+2+3+4)*(1+1/2+1/3+1/4)=125/6
右边=4^2+4-1=19
左边>右边,原式成立
(2).设当N=K时原式成立,有(1+2+3+……+K)(1+1/2+1/3+……+1/K)≥K^2+K-1
那么:(1+2+3+……+K+(K+1))(1+1/2+1/3+……+1/K+1/(K+1))
=((1+2+3+……+K)+(K+1))((1+1/2+1/3+……+1/K)+(1/(K+1)))
=(1+2+3+……+K)(1+1/2+1/3+……+1/K)
+
(1+2+3+……+K)(1/(K+1))+(1+1/2+1/3+……+1/K)(K+1)
+
(K+1)(1/(K+1))
≥K^2+K-1+(1+2+3+……+K)(1/(K+1))+(1+1/2+1/3+……+1/K)(K+1)+(K+1)(1/(K+1))
=K^2+K-1+(1+2+3+……+K)(1/(K+1))+(1+1/2+1/3……1/K)(K+1)+1
≥K^2+K-1+((K+1)K/2)(1/(K+1))+(K+1)K/(2K+2)+1 ———— ①
=K^2+K-1+K/2+K/2+1
=(K^2+2K+1)+(K+1)-1
=(K+1)^2+(K+1)-1
所以:当N=K+1时,原式成立
(3).由(1)(2)得,当N为自然数且大于等于3时,原式成立
PS:望采纳哦O(∩_∩)O~
右边=3^2+3-1=11
左边=右边,原式成立
(2)设当N=K时原式成立,有(1+2+3+……+K)(1+1/2+1/3+……+1/K)≥K^2+K-1
当=k+1时(1+2+3+...+k+k+1)(1+1/2+1/3+....+1/k+1/(k+1))=
(1+2+3+...+k)(1+1/2+1/3+...+1/k)+(k+1)(1+1/2+1/3+...)+1/(k+1)(1+2+3+...+k)+1>
k^2+k-1+(k+1)+(k+1)/2+k(k+1)/2(k+1)+1>
k^2+2k+1+k+1-1=(k+1)^2+(k+1)-1
即当n=k+1时,不等式成立
由(1)(2)得,当N为正整数数且大于2时,原式成立
(1+2+3+...+k)(1+1/2+1/3+...+1/k)+ (k+1)(1+1/2+1/3+...)+1/(k+1)(1+2+3+...+k) +1>
k^2+k-1+ (k+1)+(k+1)/2+ k(k+1)/2(k+1) +1>
k^2+2k+1+k+1-1=(k+1)^2+(k+1)-1 2007-7-21 证明:
(1)当n=1时n^3+5n=6能被6整除
(2)设n=k时k^3+5k能被6整除,则当n=k+1时
(k+1)^3+5(k+1)=k^3+5k+3(k^2+k)+6
因为k^3+5k能被6整除 且6也被6整除
现在只要证明3(k^2+k)能被6整除即可
因为k为自然数 当k为偶数时k^2+k=偶数3* (k^2+k)能被6整除
当k为奇数时k^2=奇数 k+k^2=偶数 所以(k^2+k) 也能被6整除
所以3(k^2+k)能被6整除
所以(k+1)^3+5(k+1)能被6整除
由1、2可得N的3次方加5N能被6整除
瞎整一下 2007-7-19 (这道题应该再加一句,N≥3)
证明:
(1).当N=3时,左边=(1+2+3)*(1+1/2+1/3)=11
右边=3^2+3-1=11
左边=右边,原式成立
当N=4时,左边=(1+2+3+4)*(1+1/2+1/3+1/4)=125/6
右边=4^2+4-1=19
左边>右边,原式成立
(2).设当N=K时原式成立,有(1+2+3+……+K)(1+1/2+1/3+……+1/K)≥K^2+K-1
那么:(1+2+3+……+K+(K+1))(1+1/2+1/3+……+1/K+1/(K+1))
=((1+2+3+……+K)+(K+1))((1+1/2+1/3+……+1/K)+(1/(K+1)))
=(1+2+3+……+K)(1+1/2+1/3+……+1/K)
+
(1+2+3+……+K)(1/(K+1))+(1+1/2+1/3+……+1/K)(K+1)
+
(K+1)(1/(K+1))
≥K^2+K-1+(1+2+3+……+K)(1/(K+1))+(1+1/2+1/3+……+1/K)(K+1)+(K+1)(1/(K+1))
=K^2+K-1+(1+2+3+……+K)(1/(K+1))+(1+1/2+1/3……1/K)(K+1)+1
≥K^2+K-1+((K+1)K/2)(1/(K+1))+(K+1)K/(2K+2)+1 ———— ①
=K^2+K-1+K/2+K/2+1
=(K^2+2K+1)+(K+1)-1
=(K+1)^2+(K+1)-1
所以:当N=K+1时,原式成立
(3).由(1)(2)得,当N为自然数且大于等于3时,原式成立
PS:望采纳哦O(∩_∩)O~
展开全部
n=3时,左式=11,右式=11,左式=右式,所以不等式成立
设n=k时,不等式成立,则n=k+1时
(1+2+...+n+n+1)(1+1/2+...+1/n+1/(n+1))
=(1+2+3+…+k)(1+ 1/2 + 1/3 +…+ 1/k)+(1+2+3+…+k)*(1/(k+1))+(1+ 1/2 + 1/3 +…+ 1/k)*(k+1)+1
≥k^2+k-1+1/(k+1)+(k+1)/1+2/(k+1)+(k+1)/2+...+k/(k+1)+(k+1)/k+1
≥k^2+k-1+2*k+1
=(k+1)^2+(k+1)-1
设n=k时,不等式成立,则n=k+1时
(1+2+...+n+n+1)(1+1/2+...+1/n+1/(n+1))
=(1+2+3+…+k)(1+ 1/2 + 1/3 +…+ 1/k)+(1+2+3+…+k)*(1/(k+1))+(1+ 1/2 + 1/3 +…+ 1/k)*(k+1)+1
≥k^2+k-1+1/(k+1)+(k+1)/1+2/(k+1)+(k+1)/2+...+k/(k+1)+(k+1)/k+1
≥k^2+k-1+2*k+1
=(k+1)^2+(k+1)-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询