已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以A
1个回答
2013-08-28
展开全部
亲 你的题没打完,但能知道是哪个题
(1)证明:①∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°。
∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°。
∵∠BAD=∠BAC-∠DAC,∠CAF=∠DAF-∠DAC,∴∠BAD=∠CAF。
∴△BAD≌△CAF(SAS)。 ∴∠ACF=∠ABD=45°。∴∠ACF+∠ACB=90°。∴BD⊥CF 。
② 由①△BAD≌△CAF可得BD=CF,
∵BD=BC-CD,∴CF=BC-CD。
(2)CF=BC+CD。
(3)①CF=CD-BC 。
②△AOC是等腰三角形。理由如下:
∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°。则∠ABD=180°-45°=135°。
∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°。
∵∠BAD=∠DAF -∠BAF,∠CAF=∠BAC -∠BAF,∴∠BAD=∠CAF。
∴△BAD≌△CAF(SAS)。∴∠ACF=∠ABD=180°-45°=135°。
∴∠FCD=∠ACF -∠ACB =90°,则△FCD为直角三角形。
∵正方形ADEF中,O为DF中点,∴OC= DF 。
∵在正方形ADEF中,OA= AE ,AE=DF,∴OC=OA。∴△AOC是等腰三角形。
(1)证明:①∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°。
∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°。
∵∠BAD=∠BAC-∠DAC,∠CAF=∠DAF-∠DAC,∴∠BAD=∠CAF。
∴△BAD≌△CAF(SAS)。 ∴∠ACF=∠ABD=45°。∴∠ACF+∠ACB=90°。∴BD⊥CF 。
② 由①△BAD≌△CAF可得BD=CF,
∵BD=BC-CD,∴CF=BC-CD。
(2)CF=BC+CD。
(3)①CF=CD-BC 。
②△AOC是等腰三角形。理由如下:
∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°。则∠ABD=180°-45°=135°。
∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°。
∵∠BAD=∠DAF -∠BAF,∠CAF=∠BAC -∠BAF,∴∠BAD=∠CAF。
∴△BAD≌△CAF(SAS)。∴∠ACF=∠ABD=180°-45°=135°。
∴∠FCD=∠ACF -∠ACB =90°,则△FCD为直角三角形。
∵正方形ADEF中,O为DF中点,∴OC= DF 。
∵在正方形ADEF中,OA= AE ,AE=DF,∴OC=OA。∴△AOC是等腰三角形。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询