AB是圆心点O的直径,BC垂直AB于点B,连结OC交圆心点O于点E,弦AD平行于OC。
1个回答
2013-09-01
展开全部
1
连接DB,DO。
∵AB为直径,∴∠ADB=90
∴AD⊥BD
∵AD‖OC
∴OC⊥BD
又∵OD=OB
∴OC为等腰△ODB的BD边垂直平分线
∴∠COB=∠COD
∴E 为弧DB的中点
2、在△COB和△COD中
OD=OB
CO=CO
∠COB=∠COD
∴△COB∽△COD
∴∠CDO=∠CBO=90
∴CD⊥OD 即CD为圆O的切线
连接DB,DO。
∵AB为直径,∴∠ADB=90
∴AD⊥BD
∵AD‖OC
∴OC⊥BD
又∵OD=OB
∴OC为等腰△ODB的BD边垂直平分线
∴∠COB=∠COD
∴E 为弧DB的中点
2、在△COB和△COD中
OD=OB
CO=CO
∠COB=∠COD
∴△COB∽△COD
∴∠CDO=∠CBO=90
∴CD⊥OD 即CD为圆O的切线
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询