已知,如图,三角形ABC中,AB=AC,AD,BE分别是BC,AC边上的高,AD与BE交于点F,且AE=BE求证AF=2CD
http://c.hiphotos.baidu.com/zhidao/pic/item/aec379310a55b31949c7ee0943a98226cffc178b....
http://c.hiphotos.baidu.com/zhidao/pic/item/aec379310a55b31949c7ee0943a98226cffc178b.jpg
这是图片 展开
这是图片 展开
2个回答
展开全部
解:延长BE,到EF 使EF=BE ∵AE=EC
∴得△AEF≌△BCE
∴∠AFB=∠FBC
∴AF‖BC
延长BC,过F点作BC垂线交于M点 ∵AD⊥BC ∴∠ADB=90°
∴得到FM=AD=18(平行线间的距离相等)
BF=BE+EF=2BE=2*15=30
在△FMB中,用勾股定理
求出:BM=24
再连接FC ∵AF平行且等于BC ∴四边形AFCB是平行四边形
∴AB=FC ∵∠FMB=90°=∠ADB 且还有FM=AD
∴易证△ADB≌△FCM
∴MC=BD ∵AB=AC ∴三线合一
∴BD=DC=MC
∵BD+DC+MC=BM=24
∴BD=8 BC=16
S△ABC=16*18/2=144
∴得△AEF≌△BCE
∴∠AFB=∠FBC
∴AF‖BC
延长BC,过F点作BC垂线交于M点 ∵AD⊥BC ∴∠ADB=90°
∴得到FM=AD=18(平行线间的距离相等)
BF=BE+EF=2BE=2*15=30
在△FMB中,用勾股定理
求出:BM=24
再连接FC ∵AF平行且等于BC ∴四边形AFCB是平行四边形
∴AB=FC ∵∠FMB=90°=∠ADB 且还有FM=AD
∴易证△ADB≌△FCM
∴MC=BD ∵AB=AC ∴三线合一
∴BD=DC=MC
∵BD+DC+MC=BM=24
∴BD=8 BC=16
S△ABC=16*18/2=144
追问
我求的是AF=2CD
追答
...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询