连续函数与单调函数的区别

连续函数与单调函数的区别... 连续函数与单调函数的区别 展开
 我来答
小T爱旅行
2019-04-27 · 旅游业余爱好者,希望带大家云旅游。
小T爱旅行
采纳数:301 获赞数:193924

向TA提问 私信TA
展开全部

1、图像不同

连续函数:因变量关于自变量是连续变化的,连续函数在直角坐标系中的图像是一条没有断裂的连续曲线。

单调函数: 对于整个定义域而言,函数具有单调性,在单调区间上增函数的函数图像是上升的,减函数的函数图像是下降的。

2、特点不同

连续函数: 有界性、最值性、介值性、 一致连续性。

单调函数:增减性。


3、连续性不同

连续函数只是指函数在任何区间内都是连续的没有间断。

单调函数可以有间断。函数只要是在间断点处没有跳跃都可以看成单调函数 ,所以单调函数不一定连续。

参考资料来源:百度百科——连续函数

参考资料来源:百度百科——单调函数

Cinderyq
推荐于2017-11-25 · TA获得超过790个赞
知道小有建树答主
回答量:499
采纳率:25%
帮助的人:34.8万
展开全部
  1. 函数y=f(x)当自变量x的变化很小时,所引起的因变量y的变化也很小。例如,气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的,对于这种现象,我们说因变量关于自变量是连续变化的,可用极限给出严格描述:设函数y=f(x)在x0点附近有定义,如果有 ,则称函数f在x0点连续。如果定义在区间I上的函数在每一点x∈I都连续,则说f在I上连续,此时,它在直角坐标系中的图像是一条没有断裂的连续曲线。

  2. 一般的,不强调区间的情况下,所谓的单调函数是指, 对于整个定义域而言,函数具有单调性。而不是针对定义域的子区间而言。举个例子,反比例函数是一个具有单调性的函数,而不是一个单调函数,因为在反比例函数的定义域上,并不呈现整体的单调性。单调函数只是单调性函数中特殊的一种。区间具有单调性的函数并不一定是单调函数,而单调函数的子区间上一定具有单调性。具有单调性函数可以根据区间不同而单调性不同。

  3. 连续函数只是指函数在任何区间内都是连续的没有间断,而单调函数可以有间断,只要是在间断点处没有跳跃都可以看成单调函数 ,所以单调函数不一定连续。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
种蘑菇的提莫1
2016-10-27
知道答主
回答量:12
采纳率:0%
帮助的人:2.8万
展开全部
连续函数是指函数在定义域内连续,不间断
单调函数是指函数在定义域内走势一致(单调递增或单调递减)
从中可以看出,单调函数一定是连续函数,而连续函数不一定是单调函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
江淮一楠0e88a

2016-10-17 · 知道合伙人教育行家
江淮一楠0e88a
知道合伙人教育行家
采纳数:32059 获赞数:248855

向TA提问 私信TA
展开全部
连续函数具有周期性,连续性。单调函数具有单调性(或增,或减),间断性。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
q199712210074
2016-11-02
知道答主
回答量:1
采纳率:0%
帮助的人:1063
展开全部
连续函数指其在定义域上连续,即f(x)在a处的极限=f(a),若a为端点,即其对应的左极限或右极限=f(a)
单调函数则是走势一样,递增,或者递减,但是要注意,单调函数和连续函数没有必然联系,如
y=x∧2在R上连续但不单调,
y=x(x<0),x+1(x≥0),单调但不连续
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式