高中函数有几种?分别是什么函数?函数表达式是什么?它们的定义域?值域?

懂的麻烦清楚地列一下哈,谢啦~... 懂的麻烦清楚地列一下哈,谢啦~ 展开
匿名用户
2013-09-01
展开全部
一旦函数的定义域和对应法则确定了,函数的值域也就随之确定。下面介绍几种常用的求函数值域的方法: 1.配方法 2.区间划分法 3.不等式比较法 4.函数变换法 5.换元法 6. 函数是中学数学的重要内容之一,在...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-09-01
展开全部
第一章 集合与函数概念(全章教案)第一章 集合与函数概念
一. 课标要求:
本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁
性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力 .
函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识 .
1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.
2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.
3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.
4、能在具体情境中,了解全集与空集的含义.
5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力
6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集 .
7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用
10. 通过具体实例,了解简单的分段函数,并能简单应
12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法
二. 编写意图与教学建议
1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.
2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。
3. 教材在例题、习题教学中注重运用集合的观点研究、处理数学问题,这一观点,一直贯穿到以后的数学学
§1.1.1集合的含义与表示
一. 教学目标:
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号;
(3)了解集合中元素的确定性.互异性.无序性;
(4)会用集合语言表示有关数学对象;
(5)培养学生抽象概括的能力.
2. 过程与方法
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.
(2)让学生归纳整理本节所学知识.
3. 情感.态度与价值观
使学生感受到学习集合的必要性,增强学习的积极性.
二. 教学重点.难点
重点:集合的含义与表示方法.
难点:表示法的恰当选择.
三. 学法与教学用具
1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.
四. 教学思路
(一)创设情景,揭示课题
1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?
引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.
2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.
(二)研探新知
1.教师利用多媒体设备向学生投影出下面9个实例:
(1)1—20以内的所有
(3)所有的安理会常任理事国;
(4)所有的正方形;
(5)海南省在2004年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)方程 的所有实数根;
(9)国兴中学2004年9月入学的高一学生的全体.
2.教师组织学生分组讨论:这9个实例的共同特征是什么?
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.
一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.
4.教师指出:集合常用大写字母A,B,C,D,…表示,元素常用小写字母 …表示.
(三)质疑答辩,排难解惑,发展思维
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.
2.教师组织引导学生思考以下问题:
判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;
(2)我国的小河流.
让学生充分发表自己的建解.
4.教师提出问题,让学生思考
(1)如果用A表示高—(3)班全体学生组成的集合,用 表示高一(3)班的一位同学, 是高一(4)班的一位同学,那么 与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.
如果 是集合A的元素,就说 属于集合A,记作 .
如果 不是集合A的元素,就说 不属于集合A,记作 .
(2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国.曰本与集合A的关系分别是什么?请用数学符号分别表示.
(3)让学生完成教材第6页练习第1题.
5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题.
6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:
(1)要表示一个集合共有几种方式?
(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?
(3)如何根据问题选择适当的集合表示法?
使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
(四)巩固深化,反馈矫正
教师投影学习:
(1)用自然语言描述集合{1,3,5,7,9};
(2)用例举法表示集合
(3)试选择适当的方法表示下列集合:教材第6页练习第2题.
(五)归纳整理,整体认识
在师生互动中,让学生了解或体会下例问题:
1.本节课我们学习过哪些知识内容?
2.你认为学习集合有什么意义?
3.选择集合的表示法时应注意些什么?
(六)承上启下,留下悬念
§1.1.2集合间的基本关系
一. 教学目标:
1.知识与技能
(1)了解集合之间包含与相等的含义,能识别给定集合的子集。
(2)理解子集.真子集的概念。
(3)能使用 图表达集合间的关系,体会直观图示对理解抽象概念的作用.
2. 过程与方法
让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.
3.情感.态度与价值观
(1)树立数形结合的思想 .
(2)体会类比对发现新结论的作用.
二.教学重点.难点
重点:集合间的包含与相等关系,子集与其子集的概念.
难点:难点是属于关系与包含关系的区别.
三.学法与教学用具
四.教学思路
(—)创设情景,揭示课题
问题l:实数有相等.大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?
让学生自由发言,教师不要急于做出判断。而是继续引导学生;欲知谁正确,让我们一起来观察.研探.
(二)研探新知
投影问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗?
①一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为B的子集.
记作:
读作:A含于B(或B包含A).
②如果两个集合所含的元素完全相同,那么我们称这两个集合相等.
教师引导学生类比表示集合间关系的符号与表示两个实数大小关系的等号之间有什么类似之处,强化学生对符号所表示意义的理解。并指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图。如图l和图2分别是表示问题2中实例1和实例3的Venn图. .
(三)学生自主学习,阅读理解
然后教师引导学生阅读教材第7页中的相关内容,并思考回答下例问题:
(1)集合A是集合B的真子集的含义是什么?什么叫空集?
(2)集合A是集合B的真子集与集合A是集合B的子集之间有什么区别?
(3)0,{0}与 三者之间有什么关系?
(4)包含关系 与属于关系 正义有什么区别?试结合实例作出解释.
(5)空集是任何集合的子集吗?空集是任何集合的真子集吗?
(6)能否说任何一人集合是它本身的子集,即 ?
教师巡视指导,解答学生在自主学习中遇到的困惑过程,然后让学生发表对上述问题看法.
偶函数的图象关于 轴对称;奇函数的图象关于原点对称.
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式