已知圆x�0�5+y�0�5+x-6y+3=0上两点P,Q满足:①关于直线kx-y+4=0对称②OP⊥OQ(O为圆心).求直线PQ的方程
已知圆x�0�5+y�0�5+x-6y+3=0上两点P,Q满足:①关于直线kx-y+4=0对称②OP⊥OQ(O为圆...
已知圆x�0�5+y�0�5+x-6y+3=0上两点P,Q满足:①关于直线kx-y+4=0对称②OP⊥OQ(O为圆心).求直线PQ的方程
求详细的解题过程 展开
求详细的解题过程 展开
2013-09-02
展开全部
首先化曲线方程为:
(x+1/2)^2 + (y-3)^2 = (5/2)^2
这是一个圆
那么PQ在圆上,PQ关于直线对称,那么此直线就是线段PQ的垂直平分线,直线必过圆心(-1/2, 3)
圆心在直线上代入得 -k/2 - 3 + 4 = 0
k=2
直线为2x-y+4=0 (1)
由于POQ为直角三角形,又OP=OQ=5/2为半径,故为等腰直角三角形。
假设PQ的中点为M(x,y)
应该有|OM|=5*根号2 /4
|OM|^2=(x+1/2)^2 + (y-3)^2 = 25/8 (2)
联立:(1),(2)
求得M为( -1/2 +(√10)/4 , 3+(√10)/2 )
或 (-1/2 - (√10)/4, 3-(√10)/2 )
PQ垂直于直线,故斜率为-1/2
PQ过M,
可以写出PQ的方程:
8y+4x-22-5√10 = 0
或8y+4x-22+5√10 = 0
(x+1/2)^2 + (y-3)^2 = (5/2)^2
这是一个圆
那么PQ在圆上,PQ关于直线对称,那么此直线就是线段PQ的垂直平分线,直线必过圆心(-1/2, 3)
圆心在直线上代入得 -k/2 - 3 + 4 = 0
k=2
直线为2x-y+4=0 (1)
由于POQ为直角三角形,又OP=OQ=5/2为半径,故为等腰直角三角形。
假设PQ的中点为M(x,y)
应该有|OM|=5*根号2 /4
|OM|^2=(x+1/2)^2 + (y-3)^2 = 25/8 (2)
联立:(1),(2)
求得M为( -1/2 +(√10)/4 , 3+(√10)/2 )
或 (-1/2 - (√10)/4, 3-(√10)/2 )
PQ垂直于直线,故斜率为-1/2
PQ过M,
可以写出PQ的方程:
8y+4x-22-5√10 = 0
或8y+4x-22+5√10 = 0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询