用定积分计算心形线r=a(1-cosθ)的面积。
8个回答
展开全部
结果为:
解题过程如下:
这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!
扩展资料
性质:
任何一根连续的线条都称为曲线。包括直线、折线、线段、圆弧等。处处转折的曲线一般具有无穷大的长度和零的面积,这时,曲线本身就是一个大于1小于2维的空间。
如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。
作为推论,如果两个 上的可积函数f和g相比,f(几乎)总是小于等于g,那么f的(勒贝格)积分也小于等于g的(勒贝格)积分。
以曲线的全部或确定的一段作为研究对象时,就得到曲线的整体的几何性质。设曲线C的参数方程为r=r(s),s∈【α,b)】,s为弧长参数,若其始点和终点重合r(α)=r(b)),这时曲线是闭合的,称为闭曲线。若它在这点的切向量重合,即r┡(α)=r┡(b)),且自身不再相交。
展开全部
考虑半个心形线(θ属于0到180度),每一段弧元(ds=sqrt(dr^2+(rdθ)^2))绕极轴转成一个梯形环面元,面积等于2πR*ds,R是该弧到极轴的距离:
R=rsinθ.
所以立体的侧面积就是:
2πRds的积分,把上面的R和ds代入,并利用条件代入r的表达式。
结果得到一个不太复杂的形式:
2sqrt(2)πa^2(1+cosθ)^(3/2)dθ
把积分变量代换成θ/2,可以比较容易地解出定积分式:
16πa^2*(x-x^3/3),x=sin(θ/2)
总的表面积是从0到π的积分。当然,如果说心形线凹进去的部分不算侧面积,只要求出沿极轴方向离顶点最远的点的θ=2π/3,
并把它做为积分上限即可。
结果分别是:
(32πa^2)/3
和
6sqrt(3)πa^2
望采纳。
R=rsinθ.
所以立体的侧面积就是:
2πRds的积分,把上面的R和ds代入,并利用条件代入r的表达式。
结果得到一个不太复杂的形式:
2sqrt(2)πa^2(1+cosθ)^(3/2)dθ
把积分变量代换成θ/2,可以比较容易地解出定积分式:
16πa^2*(x-x^3/3),x=sin(θ/2)
总的表面积是从0到π的积分。当然,如果说心形线凹进去的部分不算侧面积,只要求出沿极轴方向离顶点最远的点的θ=2π/3,
并把它做为积分上限即可。
结果分别是:
(32πa^2)/3
和
6sqrt(3)πa^2
望采纳。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
心形曲线r=a(1+cosb) 形状是绕了一圈 他的定义域是[0,2π]
但是他关于x轴对称
我们求面积的话,只要求上半部分就好了 因为下面的面积和上面一样
所以我们只做[0,π]上的面积,再前面乘以那个2 就行了.
但是他关于x轴对称
我们求面积的话,只要求上半部分就好了 因为下面的面积和上面一样
所以我们只做[0,π]上的面积,再前面乘以那个2 就行了.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询