什么是凹函数,什么是凸函数?傻傻分不清楚

 我来答
教育小百科达人
推荐于2019-09-20 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:468万
展开全部

凹函数是一个定义在某个向量空间的凸集C(区间)上的实值函数f。设f为定义在区间I上的函数,若对I上的任意两点X1<X2和任意的实数λ∈(0,1),总有f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2), 则f称为I上的凹函数。

凸函数,是数学函数的一类特征。凸函数就是一个定义在某个向量空间的凸子集C(区间)上的实值函数。

凸函数是一个定义在某个向量空间的凸子集C(区间)上的实值函数f,而且对于凸子集C中任意两个向量, f((x1+x2)/2)>=(f(x1)+f(x2))/2,则f(x)是定义在凸子集c中的凸函数(该定义与凸规划中凸函数的定义是一致的,下凸)。

扩展资料:

这个定义从几何上看就是:

在函数f(x)的图象上取任意两点,如果函数图象在这两点之间的部分总在连接这两点的线段的下方,那么这个函数就是凹函数。 同理可知,如果函数图像在这两点之间的部分总在连接这两点线段的上方,那么这个函数就是凸函数。

直观上看,凸函数就是图象向上突出来的。比如  凹函数就是图像向下凹进去的,比如常见的  。

如果函数f(x)在区间I上二阶可导,则f(x)在区间I上是凸函数的充要条件是f''(x)<=0;f(x)在区间I上是凹函数的充要条件是f''(x)>=0;

一般来说,可按如下方法准确说明:

1、f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2) , 即V型,为“凸向原点”,或“下凸”(也可说上凹),(有的简称凸有的简称凹)

2、f(λx1+(1-λ)x2)>=λf(x1)+(1-λ)f(x2) , 即A型,为“凹向原点”,或“上凸”(下凹),(同样有的简称凹有的简称凸)

常见的凸函数

1 指数函数 eax

2 幂函数 xa,x∈R+,1≤a或者a≤0

3 负对数函数 - log x

4 负熵函数 x log x

5 范数函数 ||x||p

如果一个可微函数f它的导数f'在某区间是单调下跌的,f就是凹的;即一个凹函数拥有一个下跌的斜率(当中下跌只是代表非上升而不是严谨的下跌,也代表这容许零斜率的存在。)

如果一个二次可微的函数f,它的二阶导数f'(x)是正值(或者说它有一个正值的加速度),那么它的图像是凹的;如果二阶导数f'(x)是负值,图像就会是凸的。当中如果某点转变了图像的凹凸性,这就是一个拐点。

如果凹函数(也就是向上开口的)有一个“底”,在底的任意点就是它的极小值。如果凸函数有一个“顶点”,那么那个顶点就是函数的极大值。

如果f(x)是二次可微的,那么f(x)就是凹的当且仅当f''(x)是非正值。如果二阶导数是负值的话它就是严谨凹函数,但相反而言又不一定正确。

参考资料:百度百科——凹函数

参考资料:百度百科——凸函数

娱乐我知晓哟

2021-06-06 · 专注各种娱乐,欢迎一起探讨
娱乐我知晓哟
采纳数:1346 获赞数:1000290

向TA提问 私信TA
展开全部

如果一个可微函数f它的导数f'在某区间是单调上升的,也就是二阶导数若存在,则在此区间,二阶导数是大于零的,f就是凹的;即一个凹函数拥有一个下跌的斜率(当中下跌只是代表非上升而不是严谨的下跌,也代表这容许零斜率的存在。)

凸函数是数学函数的一类特征。凸函数就是一个定义在某个向量空间的凸子集C(区间)上的实值函数。

凹函数、凸函数性质:

如果一个二次可微的函数f,它的二阶导数f'(x)是正值(或者说它有一个正值的加速度),那么它的图像是凹的;如果二阶导数f'(x)是负值,图像就会是凸的。当中如果某点转变了图像的凹凸性,这就是一个拐点

如果凹函数(也就是向上开口的)有一个“底”,在底的任意点就是它的极小值。如果凸函数有一个“顶点”,那么那个顶点就是函数的极大值。

如果f(x)是二次可微的,那么f(x)就是凹的当且仅当f''(x)是正值。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2021-06-06 · TA获得超过25.9万个赞
知道小有建树答主
回答量:2206
采纳率:96%
帮助的人:80.3万
展开全部

凹函数是一个定义在某个向量空间的凸集C(区间)上的实值函数f。

设f为定义在区间I上的函数,若对I上的任意两点X1<X2和任意的实数λ∈(0,1),总有f(λx1+(1-λ)x2≥λf(x1)+(1-λ)f(x2), 则f称为I上的凹函数。

凸函数就是一个定义在某个向量空间的凸子集C(区间)上的实值函数。若对I上的任意两点X1<X2和任意的实数λ∈(0,1),总有f(λx1+(1-λ)x2≤λf(x1)+(1-λ)f(x2), 则f称为I上的凸函数。

凸函数性质

1、若f为定义在凸集S上的凸函数,则对任意实数β≥0,函数βf也是定义在S上的凸函数;

2、若f1和f2为定义在凸集S上的两个凸函数,则其和f=f1+f2仍为定义在S上的凸函数;

3、若fi(i=1,2,…,m)为定义在凸集S上的凸函数,则对任意实数βi≥0,函数βifi也是定义在S上的凸函数;

4、若f为定义在凸集S上的凸函数,则对每一实数c,水平集Sc={x|x∈S,f(x)≤c}是凸集。

以上内容参考 百度百科—凹函数

以上内容参考 百度百科—凸函数

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
7zone射手
2016-12-29 · TA获得超过3万个赞
知道大有可为答主
回答量:6516
采纳率:93%
帮助的人:1174万
展开全部

一阶导数是斜率,二阶导数判断凹凸性

也就是说,二阶导数,是描述斜率增长快慢的

从形状上可以区分函数的凹凸性质

二阶导数大于0,凹函数

二阶导数小于0,凸函数

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
推荐于2018-05-01
展开全部
所谓凹函数和凸函数,可以这样想,
函数上取两个点,这两个点之间的直线段,在函数曲线之上,说明函数是凹的。两点之间的直线段,在函数曲线之下,说明函数的是凸的。
因为直线段是直的。所以曲线在这个直的线段之上,就说明向上凸。曲线在这个直的线段之下,就说明向下凹。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(9)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式