求sin(α+β)=sinαcosβ+cosαsinβ的推导过程
2个回答
2013-09-02
展开全部
两角和的余弦公式: cos(α+β)=cosαcosβ-sinαsinβ; (思路:在直角坐标系的单位圆中,根据两点间的距离公式来推导) 作∠AOD=α,∠BOD=-β,∠AOC=β,∠DOC=β+α。 则B(cosβ,-sinβ);D(1,0);A(cosα,sinα); C[cos(α+β),sin(α+β)]。 ∵ OA=OB=OC=OD=1 ∴ CD=AB。 ∵ CD2=[cos(α+β)-1] 2+[ sin(α+β)-0] 2; =cos2(α+β)- 2cos(α+β)+1 + sin2(α+β); =2-2 cos(α+β)。 AB2=(cosα-cosβ)2+ (sinα+sinβ)2; =cos2α-2cosαcosβ+cos2β+sin2α+2sinαsinβ+ sin2β; =2-2[cosαcosβ- sinαsinβ]。 ∴ 2-2 cos(α+β)=2-2[cosαcosβ- sinαsinβ]。 ∴ cos(α+β)=cosαcosβ- sinαsinβ
2013-09-02
展开全部
画图解决吧 自己试试看
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |