2个回答
展开全部
令y=(tanx)^sinx
lny=sinxlntanx
lim(x→0)lny
=lim(x→0)sinxlntanx
=lim(x→0)lntanx/cscx
这是∞/∞型,可以用洛必达法则
=lim(x→0)(1/tanx*(sec²x)/(-cotx*cscx)
=lim(x→0)-sec²x/(tanx*cotx*cscx)
=lim(x→0)-(1/cos²x)/(1/sinx)
=lim(x→0)-sinx/cos²x
=0
所以原式=e^0=1
lny=sinxlntanx
lim(x→0)lny
=lim(x→0)sinxlntanx
=lim(x→0)lntanx/cscx
这是∞/∞型,可以用洛必达法则
=lim(x→0)(1/tanx*(sec²x)/(-cotx*cscx)
=lim(x→0)-sec²x/(tanx*cotx*cscx)
=lim(x→0)-(1/cos²x)/(1/sinx)
=lim(x→0)-sinx/cos²x
=0
所以原式=e^0=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询