如果矩阵A²=A,B²=B,试证明(A+B)²=A+B当且仅当AB=BA=0
展开全部
a²+b²+c²+2ab+2bc+2ca=3a²+3b²+3c²
2a²+2b²+2c²-2ab-2bc-2ac=0
(a²-2ab+b²)+(b²-2bc+c²)+(c²-2ac+a²)=0
(a-b)²+(b-c)²+(c-a)²=0
平方大于等于0,相加等于0,若有一个大于0,则至少有一个小于0,不成立
所以三个都等于0
所以a-b=0,b-c=0,c-a=0
a=b,b=c,c=a
所以a=b=c
2a²+2b²+2c²-2ab-2bc-2ac=0
(a²-2ab+b²)+(b²-2bc+c²)+(c²-2ac+a²)=0
(a-b)²+(b-c)²+(c-a)²=0
平方大于等于0,相加等于0,若有一个大于0,则至少有一个小于0,不成立
所以三个都等于0
所以a-b=0,b-c=0,c-a=0
a=b,b=c,c=a
所以a=b=c
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询