3个回答
展开全部
若x²-xy+y²=1, 则x²+2y²的最小值为 ?
解:∵x²-xy+y²=1;
∴z=x²+2y²=(x²+2y²)/(x²-xy+y²)=[(x/y)+2(y/x)]/[(x/y)-1+(y/x)]
令x/y=u,则y/x=1/u,代入上式得:
z=[u+(2/u)]/[u+(1/u)-1]=(u²+2)/(u²-u+1)=1+(u+1)/(u²-u+1)............①
令dz/du=[(u²-u+1)-(u+1)(2u-1)]/(u²-u+1)²=-(u²+2u-2)/(u²-u+1)²=0
得 u²+2u-2=0;故得驻点u=(-2±√12)/2=-1±√3
u₁=-1-√3是极小点;u₂=-1+√3是极大点。
将u₁之值代入①,即得最小值z=1+(-√3)/[(-1-√3)²-(-1-√3)+1]=1-(√3)/(6+3√3)
=1-(√3)(6-3√3)/(36-27)=1-[(6√3)-9]/9=2-(2/3)√3.
即x²+2y²的最小值为2-(2/3)√3。
解:∵x²-xy+y²=1;
∴z=x²+2y²=(x²+2y²)/(x²-xy+y²)=[(x/y)+2(y/x)]/[(x/y)-1+(y/x)]
令x/y=u,则y/x=1/u,代入上式得:
z=[u+(2/u)]/[u+(1/u)-1]=(u²+2)/(u²-u+1)=1+(u+1)/(u²-u+1)............①
令dz/du=[(u²-u+1)-(u+1)(2u-1)]/(u²-u+1)²=-(u²+2u-2)/(u²-u+1)²=0
得 u²+2u-2=0;故得驻点u=(-2±√12)/2=-1±√3
u₁=-1-√3是极小点;u₂=-1+√3是极大点。
将u₁之值代入①,即得最小值z=1+(-√3)/[(-1-√3)²-(-1-√3)+1]=1-(√3)/(6+3√3)
=1-(√3)(6-3√3)/(36-27)=1-[(6√3)-9]/9=2-(2/3)√3.
即x²+2y²的最小值为2-(2/3)√3。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询