
1个回答
展开全部
化为 z' - (2/x)z = x/2 是一阶线性微分方程
z = e^(∫2dx/x) [ ∫(x/2)e^(∫-2dx/x)dx + C]
= x^2 [ ∫(x/2)(1/x^2)dx + C]
= x^2 [(1/2)∫dx/x + C]
= x^2 [(1/2)lnx + C]
z = e^(∫2dx/x) [ ∫(x/2)e^(∫-2dx/x)dx + C]
= x^2 [ ∫(x/2)(1/x^2)dx + C]
= x^2 [(1/2)∫dx/x + C]
= x^2 [(1/2)lnx + C]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询