向量组的秩与矩阵秩的关系是不是都是相等的

 我来答
帐号已注销
2020-11-08 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:166万
展开全部

相等。

矩阵的秩就是它的行向量组(成或列向量组)的秩。

以列向量组为例,因bai为,初等变换不du改变矩阵的秩。并且,向量组的zhi矩阵经初等变换后得到的向量组与原向量组有相同的线性关系,进而有相同的秩。故矩阵的秩与其列向量组的秩相同。

并没有规定求矩阵的行秩(实际上你应该表达的是列秩)只能使用行变换,因为第一个命题,其实行列变换都可以用,只是在求列向量组的极大无关组时才只能用行变换。

扩展资料:

A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。特别规定零矩阵的秩为零。

显然rA≤min(m,n) 易得:若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)≠0;不满秩矩阵就是奇异矩阵,det(A)=0。由行列式的性质知,矩阵A的转置AT的秩与A的秩是一样的,即rank(A)=rank(AT)。

参考资料来源:百度百科-矩阵的秩

北京埃德思远电气技术咨询有限公司
2023-07-25 广告
有关系的。如果矩阵可以对角化,那么非0特征值的个数就等于矩阵的秩;如果矩阵不可以对角化,这个结论就不一定成立了。为讨论方便,设A为m阶方阵。证明:设方阵A的秩为n。因为任何矩阵都可以通过一系列初等变换,变成形如:1 0 … 0 … 00 1... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
1135334854_qwe
2018-02-18 · TA获得超过937个赞
知道小有建树答主
回答量:307
采纳率:97%
帮助的人:68.2万
展开全部
向量组的秩:指的是其最大线性无关组中的向量个数。
矩阵的秩:指的是最大非零子式的阶数。
虽然这两个定义不一样,但是将矩阵的行看作是行向量,这个行向量组的秩却和矩阵的秩一样。同样的,列向量组的秩却和矩阵的秩也一样。所以它们在这样的联系下可以看作是相等的。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
数学刘哥
2018-01-22 · 知道合伙人教育行家
数学刘哥
知道合伙人教育行家
采纳数:2342 获赞数:7194
乙等奖学金,本科高数上97高数下95,应用数学考研专业第二

向TA提问 私信TA
展开全部
是相等的,矩阵就可以看成是行向量组或者列向量组
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式