……,a = f'(0);
因
lim(x→0)[g(x) - g(0)]/x
= lim(x→0)[f(x)/x - f'(0)]/x
= lim(x→0)[f(x) - xf'(0)]/x^2 (0/0,用L'Hospital法则)
= lim(x→0)[f'(x) - f'(0)]/2x
= f"(0)/2,
得知
g'(x) = [xf'(x) - f(x)]/x^2,x ≠ 0,
= (1/2)f"(0), x = 0,
明显的,在 x ≠ 0,g'(x) 是连续的;而在 x = 0 处,
lim(x→0)g'(x)
= lim(x→0)[xf'(x) - f(x)]/x^2 (0/0,用L'Hospital法则)
= lim(x→0)[f'(x) + xf"(x) - f'(x)]/2x
= lim(x→0)f"(x)/2
= f"(0)/2, (若有 f"(x) 在 x = 0 连续的条件)
得证。
注:好像少了条件 “ f"(x) 在 x = 0 连续”。
条件没有少,我刚看了
看看,换个方法求极限:
lim(x→0)g'(x)
= lim(x→0)[xf'(x) - f(x)]/x^2
= lim(x→0)[f'(x) - f'(0)]/x - lim(x→0)[f(x) - xf'(0)]/x^2
= f"(0) - f"(0)/2
= f"(0)/2,
得证。
注:这样,不需要条件 “ f"(x) 在 x = 0 连续”。