已知F是椭圆的右焦点,过原点的直线交椭圆于A,P两点,直线PF垂直于x轴,直线AF交椭圆于另一点B,且PA垂

已知F是椭圆的右焦点,过原点的直线交椭圆于A,P两点,直线PF垂直于x轴,直线AF交椭圆于另一点B,且PA垂直于PB,求椭圆离心率... 已知F是椭圆的右焦点,过原点的直线交椭圆于A,P两点,直线PF垂直于x轴,直线AF交椭圆于另一点B,且PA垂直于PB,求椭圆离心率 展开
xjysony
2013-09-06 · TA获得超过133个赞
知道小有建树答主
回答量:355
采纳率:0%
帮助的人:314万
展开全部
设椭圆x^2/a^2+y^2/b^2=1(a>b>0)F(√(a^2-b^2),0) P(√(a^2-b^2),b^2/a) A(-√(a^2-b^2),-b^2/a)
直线AF方程:y=b^/(2a√(a^2-b^2)(x-√(a^2-b^2))
与椭圆x^2/a^2+y^2/b^2=1联立解得:
B(√(a^2-b^2)*(-b^2+4*a^2)/(4*a^2-3*b^2),b^4/[a(4*a^2-3*b^2)])

向量AP=(2√(a^2-b^2),2b^2/a)
向量BP=(√(a^2-b^2)-√(a^2-b^2)*(-b^2+4*a^2)/(4*a^2-3*b^2),b^2/a-b^4/[a(4*a^2-3*b^2)])
∵PB垂直于PA
∴(a^2-b^2)-(a^2-b^2)*(-b^2+4*a^2)/(4*a^2-3*b^2)+b^4/a^2-b^6/[a^2(4*a^2-3*b^2)]=0
-2*b^2*(a^4-3*a^2*b^2+2*b^4)/a^2/(4*a^2-3*b^2)=0

(a^2-b^2)^2=(a^2*-b^2)b^2

c^4=c^2(a^2-c^2)
e^4=e^2(1-e^2)
2e^4=e^2
2e^2=1
e=√2/2
更多追问追答
追问
我看到网上的答案了,我没求出B的坐标,能告诉我怎么求出来的吗?
追答
B的坐标是通过直线AF的方程与椭圆的方程联立的方程组求出来的,
其中一个解是A的坐标,一个解是B的坐标,就是这么求出来的(用△求解),计算有点复杂,要步步小心
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式