高一数学当x∈[0,5]时,函数f(x)=3x²-4x+c的值域为
A[f(0),f(5)]B[f(0),f(2/3)]C[f(2/3),f(5)]D[c,f(5)]详解下谢谢...
A [f(0),f(5)] B [f(0),f(2/3)] C [f(2/3),f(5)] D [c,f(5)]
详解下谢谢 展开
详解下谢谢 展开
4个回答
展开全部
f(x)=3x²-4x+c=3(x- 2/3)²+c -4/3
对称轴x=2/3,在区间[0,5]上。
x=2/3时,f(x)有最小值。
至于最大值,函数图像开口向上,只要判断两边界与对称轴的距离,距离远的值就大。
|5-2/3|=13/3 |0-2/3|=2/3 13/3>2/3,当x=5时,f(x)有最大值。
综上,函数值域为[f(2/3),f(5)],选C。
对称轴x=2/3,在区间[0,5]上。
x=2/3时,f(x)有最小值。
至于最大值,函数图像开口向上,只要判断两边界与对称轴的距离,距离远的值就大。
|5-2/3|=13/3 |0-2/3|=2/3 13/3>2/3,当x=5时,f(x)有最大值。
综上,函数值域为[f(2/3),f(5)],选C。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
对称轴处取最小值f(2/3)
x=5时取最大值f(5)
选C
x=5时取最大值f(5)
选C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询