ln(1+tanx)在0到派/4上的积分如何计算

 我来答
小斗门D2
2019-07-21 · TA获得超过6249个赞
知道大有可为答主
回答量:7830
采纳率:84%
帮助的人:326万
展开全部
如果是求定积分的话就好了 ∫[0,π/4]ln(1+tanx)dx 换元π/4-t=x =-∫[π/4,0]ln[1+(1-tant)/(tant+1)]dt= =∫[0,π/4]ln[2/(tant+1)]dt=∫[0,π/4]ln2-∫[0,π/4]ln(tant+1)dt=πln2/4-∫[0,π/4]ln(tanx+1)dx 2∫[0,π/4]ln(1+tanx)dx=πln2/4 所以∫[0,π/4]ln(1+tanx)dx=πln2/8 希望对你有助
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式