ln(1+tanx)在0到派/4上的积分如何计算
展开全部
如果是求定积分的话就好了 ∫[0,π/4]ln(1+tanx)dx 换元π/4-t=x =-∫[π/4,0]ln[1+(1-tant)/(tant+1)]dt= =∫[0,π/4]ln[2/(tant+1)]dt=∫[0,π/4]ln2-∫[0,π/4]ln(tant+1)dt=πln2/4-∫[0,π/4]ln(tanx+1)dx 2∫[0,π/4]ln(1+tanx)dx=πln2/4 所以∫[0,π/4]ln(1+tanx)dx=πln2/8 希望对你有助
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |