如图,△ABC中,角平分线BD,CE交于点O,求∠BOC的度数
3个回答
展开全部
解:∠BOC=180°-(∠OBC+∠OCB) =180°-(1/2∠ABC+1/2∠ACB)
=180°-(1/2)(∠ABC+∠ACB)
=180°-(1/2)(180-∠A)
=180°-90°+1/2∠A
=90°+1/2∠A
=90°+1/2*50°
=90°+25°
=115°∠BOC=180°-(∠OBC+∠OCB)
=180°-(1/2∠ABC+1/2∠ACB)
=180°-(1/2)(∠ABC+∠ACB)
=180°-(1/2)(180-∠A)
=180°-90°+1/2∠A
=90°+1/2∠A
希望对你有帮助
=180°-(1/2)(∠ABC+∠ACB)
=180°-(1/2)(180-∠A)
=180°-90°+1/2∠A
=90°+1/2∠A
=90°+1/2*50°
=90°+25°
=115°∠BOC=180°-(∠OBC+∠OCB)
=180°-(1/2∠ABC+1/2∠ACB)
=180°-(1/2)(∠ABC+∠ACB)
=180°-(1/2)(180-∠A)
=180°-90°+1/2∠A
=90°+1/2∠A
希望对你有帮助
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询