高等数学问题求解
2个回答
展开全部
y'-ycotx=2xsinx
y=e^∫cotxdx·{∫[2xsinx·∫(-cotxdx)]dx+C}
=sinx·{∫2xdx+C}
=sinx·(x²+C)
y=e^∫cotxdx·{∫[2xsinx·∫(-cotxdx)]dx+C}
=sinx·{∫2xdx+C}
=sinx·(x²+C)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y'-ycotx=0
dy/dx=yxcotx
1/yxdy=cotxxdx
Inlyl=In(sin(x))+c1
y=c2xsin(x)
令y=c(x)xsin(x)常数变易法
y'=c(x)cos(x)+c'(x)xsin(x)
y'-y=c(x)cos(x)
+c'(x)xsin(x)-c(x)cos(x)=2xxsin(x)
=>c'(x)=2x=>C(x)=x2+C3
即
y'-ycotx=2xsinx的通解为
y=(×2+c3)xsin(x)c3为任意常数
dy/dx=yxcotx
1/yxdy=cotxxdx
Inlyl=In(sin(x))+c1
y=c2xsin(x)
令y=c(x)xsin(x)常数变易法
y'=c(x)cos(x)+c'(x)xsin(x)
y'-y=c(x)cos(x)
+c'(x)xsin(x)-c(x)cos(x)=2xxsin(x)
=>c'(x)=2x=>C(x)=x2+C3
即
y'-ycotx=2xsinx的通解为
y=(×2+c3)xsin(x)c3为任意常数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询