|x-a2+a+2|+|x-a2+3a-1|=2a-3

集合A={x|x2+(2a-3)x-3a=0,x∈R},B={x|x2+(a-3)x+a2-3a=0,x∈R}满足A≠B,且A∩B≠∅,用举例表示A∪B... 集合A={x|x2+(2a-3)x-3a=0,x∈R},B={x|x2+(a-3)x+a2-3a=0,x∈R}满足A≠B,且A∩B≠∅,用举例表示A∪B 展开
 我来答
柔雨寒念蕾
2020-07-11 · TA获得超过1092个赞
知道小有建树答主
回答量:1686
采纳率:92%
帮助的人:7.8万
展开全部

因为集合A={x|x2+(2a-3)x-3a=0,x∈R},B={x|x2+(a-3)x+a2-3a=0,x∈R}满足A≠B,且A∩B≠∅
所以说明方程 x2+(2a-3)x-3a=0 和 x2+(a-3)x+a2-3a=0至少有一个根实数根相同.
有三种情况:
(1)两个方程都有两个不同的实数根,但有且只有一个是相同的;
(2)A方程有两个不同的实数根,B方程有两个相同同的实数根,并且有且只有一个是相同的;
(3)B方程有两个不同的实数根,A方程有两个相同同的实数根,并且有且只有一个是相同的.
因为A方程x2+(2a-3)x-3a=0 (-3a)=4a²+9>0,所以A方程有两个不同的实数根
因为B方程x2+(a-3)x+a2-3a=0 △=(a-3)²-4*(a2-3a)=-3(a+1)(a-3)≥0,解得-1≤a≤3
由此可见只存在上述(1)(2)两种情况 且a∈[-1,3]
通过联立方程可以求出相同的根
解方程组 x2+(2a-3)x-3a=0,x2+(a-3)x+a2-3a=0得
a=0或a=2 显然a∈[-1,3]
当a=0时,把a=0带入方程A和B解得 A={0,3} B={0,3}
显然A=B,不符合题目A≠B的要求,所以a不能等于0
当a=2时,把a=2带入方程A和B解得 A={2,-3} B={-1,2}
显然A≠B,A∩B={2}≠∅,符合题目要求
所以A∪B={-3,-1,2}
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
华瑞RAE一级代理商
2024-04-11 广告
ppbRAE 3000是一款当今市场广谱手持式挥发性有机化合物(VOC)气体检测仪,pgm7340采用RAE较新的第三代光离子化检测器(PID),提高了检测精度和响应时间,检测范围达到1ppb-10000ppm,通过无线模块可以实现与控制台... 点击进入详情页
本回答由华瑞RAE一级代理商提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式