已知定义在R上的偶函数f(x)满足条件:f(x+1)=-f(x),且在[-1,0...

已知定义在R上的偶函数f(x)满足条件:f(x+1)=-f(x),且在[-1,0]上是增函数,给出下面关于f(x)的命题:①f(x)是周期函数;②f(x)在[0,1]上是... 已知定义在R上的偶函数f(x)满足条件:f(x+1)=-f(x),且在[-1,0]上是增函数,给出下面关于f(x)的命题: ①f(x)是周期函数; ②f(x)在[0,1]上是增函数 ③f(x)在[1,2]上是减函数 ④f(2)=f(0) 其中正确的命题序号是 .(注:把你认为正确的命题序号都填上) 展开
 我来答
皋空绪敏慧
2020-05-19 · TA获得超过3953个赞
知道大有可为答主
回答量:3125
采纳率:27%
帮助的人:456万
展开全部
分析:由f(x+1)=-f(x),可得f[(x+1)+1]=f(x),由周期函数的定义可以判断①的正误;
根据偶函数在对称区间上对称性相反,结合已知f(x)在[-1,0]上是增函数,可判断②的真假;
根据函数的周期性及②中结论,可判断③的真假;
根据函数的周期性,可判断④的真假;
解答:解:∵f(x+1)=-f(x),∴f(x+2)=f[(x+1)+1]=-f(x+1)=f(x),故f(x)是以2为周期的周期函数,故①正确;
∵偶函数f(x)在对称区间上单调性相反,且f(x)在[-1,0]上是增函数,得f(x)在[0,1]上是减函数,故②错误;
∵f(x)在[-1,0]上是增函数,且f(x)是以2为周期的周期函数,∴f(x)在[1,2]上是增函数,故③错误;
∵f(x)是以2为周期的周期函数,∴f(2)=f(0),故④正确;
故答案为:①④
点评:本题以命题的真假判断为载体考查了函数的单调性,奇偶性和周期性,其中熟练掌握周期函数在对应周期上单调性相同,偶函数在对称区间上单调性相反等性质是解答的关键.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式