2个回答
2021-03-15 · 知道合伙人教育行家
关注
展开全部
x>0
f(x)=x+1/x
=(√x)²-2*√x*1/√x+(1/√x)²+2
=[(√x)-1/(√x)]²+2≥2
当√x=1/√x时,即x=1时,有极小值2
单调减区间(0,1)
单调增区间(1,+∞);
证明:
首先:
令0<x1<x2<1
f(x2)-f(x1)=(x2+1/x2)-(x1+1/x1)
=(x2-x1)-(1/x1-x2)
=(x2-x1)-(x2-x1)/(x1x2)
=(x2-x1)[(x1x2-1)/(x1x2)
∵0<x1<x2<1
∴ x2-x1>0,(x1x2-1)<0,x1x2>0
∴f(x2)-f(x1)=(x2-x1)[(x1x2-1)/(x1x2)<0
∴f(x2)<f(x1)
∴ 0<x<1时,f(x)单调减
其次:
令1<x3<x4
f(x4)-f(x3)=(x4+1/x4)-(x3+1/x3)
=(x4-x3)-(1/x3-x4)
=(x4-x3)-(x4-x3)/(x3x4)
=(x4-x3)[(x3x4-1)/(x3x4)
∵1<x3<x4
∴ x4-x3>0,(x3x4-1)>0,x3x4>0
∴f(x4)-f(x3)=(x4-x3)[(x3x4-1)/(x3x4)>0
∴f(x4)>f(x3)
∴x>1时,f(x)单调增
f(x)=x+1/x
=(√x)²-2*√x*1/√x+(1/√x)²+2
=[(√x)-1/(√x)]²+2≥2
当√x=1/√x时,即x=1时,有极小值2
单调减区间(0,1)
单调增区间(1,+∞);
证明:
首先:
令0<x1<x2<1
f(x2)-f(x1)=(x2+1/x2)-(x1+1/x1)
=(x2-x1)-(1/x1-x2)
=(x2-x1)-(x2-x1)/(x1x2)
=(x2-x1)[(x1x2-1)/(x1x2)
∵0<x1<x2<1
∴ x2-x1>0,(x1x2-1)<0,x1x2>0
∴f(x2)-f(x1)=(x2-x1)[(x1x2-1)/(x1x2)<0
∴f(x2)<f(x1)
∴ 0<x<1时,f(x)单调减
其次:
令1<x3<x4
f(x4)-f(x3)=(x4+1/x4)-(x3+1/x3)
=(x4-x3)-(1/x3-x4)
=(x4-x3)-(x4-x3)/(x3x4)
=(x4-x3)[(x3x4-1)/(x3x4)
∵1<x3<x4
∴ x4-x3>0,(x3x4-1)>0,x3x4>0
∴f(x4)-f(x3)=(x4-x3)[(x3x4-1)/(x3x4)>0
∴f(x4)>f(x3)
∴x>1时,f(x)单调增
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询