对数函数的定义域是什么?
1个回答
展开全部
1、卜拆对数函数的真数g(x)>0;
2、对数函数的底数f(x)>0,且f(x)≠1。
对数函数的底数要大于0且不为1的原因:
在一个普通对数式里 a<0,或=1 的时候是会有相应b的值。但是,根据对数定义:log以a为底a的对数;如果a=1或=0,那么log以a为底a的对数就可以等于一切实数,比如log11也可以等于2,3,4,5,等等。
扩展资料:
对数函数性质:
对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1,和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}:
值域:实数集R,显然对数函数无界;
定点:凯乱对数函数的函数图像恒过定点(1,0);
0<a<1时,在定义域上为单调减函数;
奇偶性:非奇非偶函数
周期性:不是周期函数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询