求空间曲线的弧长微分(第一类曲线积分)
如果已经知道曲线Γ:x=φ(t);y=ψ(t);z=ω(t),那么ds=√([φ‘(t)]^2+[ψ'(t)]^2+[ω'(t)]^2)那如果知道的曲线Γ是一般式的话,例...
如果已经知道曲线Γ:x=φ(t);y=ψ(t);z=ω(t),那么ds=√( [φ‘(t)]^2+[ψ'(t)]^2+[ω'(t)]^2 )
那如果知道的曲线Γ是一般式的话,例如Γ: F(x,y,z)=0;G(x,y,z)=0,那么它的ds是什么呢?有了ds之后又如何计算?是带入化为与x,y,z其中任意两者相关的二重积分吗? 展开
那如果知道的曲线Γ是一般式的话,例如Γ: F(x,y,z)=0;G(x,y,z)=0,那么它的ds是什么呢?有了ds之后又如何计算?是带入化为与x,y,z其中任意两者相关的二重积分吗? 展开
2个回答
展开全部
空间曲线的弧长积分,只有化为参数方程是常用的
对于Γ:F(x,y,z)和G(x,y,z) = 0
往往可以设为参数方程:x = x(t),y = y(t),z = z(t)
ds = √(dx² + dy² + dz²) dt = √[x'(t)² + y'(t)² + z'(t)²] dt
代入之后就是一个普通的定积分
∫L ƒ(x,y,z) ds
= ∫(α→β) ƒ[x(t),y(t),z(t)] * √[x'(t)² + y'(t)² + z'(t)²] dt
例如Γ是球面x² + y² + z² = 9/2与平面x + z = 1的交线。
将z = 1 - x代入球面方程得(1/2)(x - 1/2)² + (1/4)y² = 1
即[(x - 1/2)/√2]² + (y/2)² = 1
令(x - 1/2)/√2 = cost,y/2 = sint
即x = 1/2 + √2cost,y = 2sint
z = 1 - x = 1 - (1/2 + √2cost) = 1/2 - √2cost
{ x = 1/2 + √2cost
{ y = 2sint
{ z = 1/2 - √2cost
0 ≤ t ≤ 2π
ds = √[x'(t)² + y'(t)² + z'(t)²] dt = 2 dt
所以∫L ƒ(x,y,z) ds
= ∫(0→2π) ƒ(1/2 + √2cost,2sint,1/2 - √2cost) * 2 dt
若ƒ(x,y,z)与曲线方程符合的话,也先将曲线方程代入ƒ(x,y,z)中化简积分
对于Γ:F(x,y,z)和G(x,y,z) = 0
往往可以设为参数方程:x = x(t),y = y(t),z = z(t)
ds = √(dx² + dy² + dz²) dt = √[x'(t)² + y'(t)² + z'(t)²] dt
代入之后就是一个普通的定积分
∫L ƒ(x,y,z) ds
= ∫(α→β) ƒ[x(t),y(t),z(t)] * √[x'(t)² + y'(t)² + z'(t)²] dt
例如Γ是球面x² + y² + z² = 9/2与平面x + z = 1的交线。
将z = 1 - x代入球面方程得(1/2)(x - 1/2)² + (1/4)y² = 1
即[(x - 1/2)/√2]² + (y/2)² = 1
令(x - 1/2)/√2 = cost,y/2 = sint
即x = 1/2 + √2cost,y = 2sint
z = 1 - x = 1 - (1/2 + √2cost) = 1/2 - √2cost
{ x = 1/2 + √2cost
{ y = 2sint
{ z = 1/2 - √2cost
0 ≤ t ≤ 2π
ds = √[x'(t)² + y'(t)² + z'(t)²] dt = 2 dt
所以∫L ƒ(x,y,z) ds
= ∫(0→2π) ƒ(1/2 + √2cost,2sint,1/2 - √2cost) * 2 dt
若ƒ(x,y,z)与曲线方程符合的话,也先将曲线方程代入ƒ(x,y,z)中化简积分
追问
= =这个我已经知道了,而且我问的也不是这个。。。不过我已经解决了,还是谢谢你
系科仪器
2024-08-02 广告
2024-08-02 广告
椭偏仪建模过程涉及光学测量与物理建模的结合。首先,通过椭偏仪收集材料表面反射光的偏振态变化数据。随后,利用这些数据,结合菲涅耳反射系数等理论,进行物理建模。建模过程中需调整材料的光学色散参数与薄膜的3D结构参数,以反向拟合出材料的实际光学特...
点击进入详情页
本回答由系科仪器提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |