已知数列{an}满足a1=1,an=a(n-1)/3a(n-1)+1(n>=2,n属于N*)
(1)求出an的通项公式(2)设bn=an*a(n+1)求数列{bn}的前n项和sn(3)求sn的极限...
(1)求出an的通项公式
(2)设bn=an*a(n+1)求数列{bn}的前n项和sn
(3)求sn的极限 展开
(2)设bn=an*a(n+1)求数列{bn}的前n项和sn
(3)求sn的极限 展开
展开全部
1. An=[A(n-1)]/[3A(n-1)+1]
==> 1/An =3 +1/A(n-1)
1/An -1/A(n-1) =3
==>
{1/an}为等差数列, 首项 =1/A1 =1, 公差 =3
2. 1/An =1/A1 +3(n-1) =3n-2
==> An
=1/(3n-2)
3. Bn =An*A(n+1) =1/(3n-2)(3n+1) =[1/(3n-2) -1/(3n+1)]/3
==>
Sn =[1 -1/(3n+1)]/3 = n/(3n+1)
Sn的极限为1/3
==> 1/An =3 +1/A(n-1)
1/An -1/A(n-1) =3
==>
{1/an}为等差数列, 首项 =1/A1 =1, 公差 =3
2. 1/An =1/A1 +3(n-1) =3n-2
==> An
=1/(3n-2)
3. Bn =An*A(n+1) =1/(3n-2)(3n+1) =[1/(3n-2) -1/(3n+1)]/3
==>
Sn =[1 -1/(3n+1)]/3 = n/(3n+1)
Sn的极限为1/3
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询