求作业答案:如图所示,在Rt△ABC
如图所示,在Rt△ABC中,∠ABC=90°,将Rt△ABC绕点C顺时针方向旋转60°得到△DEC,点E在AC上,再将Rt△ABC沿着AB所在直线翻转180°得到△ABF...
如图所示,在Rt△ABC中,∠ABC=90°,将Rt△ABC绕点C顺时针方向旋转60°得到△DEC,点E在AC上,再将Rt△ABC沿着AB所在直线翻转180°得到△ABF,连接AD。 (1)求证:四边形AFCD是菱形; (2)连接BE并延长交AD于G,连接CG,请问:四边形ABCG是什么特殊平行四边形?为什么?
展开
1个回答
展开全部
解:(1)证明:Rt△DC是由Rt△ABC绕C点旋转60°得到, ∴AC=DC,∠ACB=∠ACD=60°, ∴△ACD是等边三角形, ∴AD=DC=AC, 又∵Rt△ABF是由Rt△ABC沿AB所在直线翻转180°得到, ∴AC=AF,∠ABF=∠ABC=90°, ∴∠FBC是平角, ∴点F、B、C三点共线, ∴△AFC是等边三角形, ∴AF=FC=AC, ∴AD=DC=FC=AF, ∴四边形AFCD是菱形; (2)四边形ABCG是矩形; 证明:由(1)可知:△ACD是等边三角形,DE⊥AC于E, ∴AE=EC, ∵AG∥BC ∴∠EAG=∠ECB,∠AGE=∠EBC, ∴△AEG≌△CEB, ∴AG=BC, ∴四边形ABCG是平行四边形,而∠ABC=90°, ∴四边形ABCG是矩形。 |
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询