展开全部
这类题不是用拉格朗日定理解的。是求导用单调性解的。
记 F(x) = sinx - x + x^2/2, 则 F(0) = 0,
F'(x) = cosx - 1 + x, F''(x) = -sinx + 1 ≥ 0, F'(x) 单调增加,
则当 x > 0 时,F'(x) > F'(0) = 0, F(x) 单调增加,
得 F(x) = sinx - x + x^2/2 > 0, 即 sinx > x - x^2/2
记 F(x) = sinx - x + x^2/2, 则 F(0) = 0,
F'(x) = cosx - 1 + x, F''(x) = -sinx + 1 ≥ 0, F'(x) 单调增加,
则当 x > 0 时,F'(x) > F'(0) = 0, F(x) 单调增加,
得 F(x) = sinx - x + x^2/2 > 0, 即 sinx > x - x^2/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询