常见的导数公式大全
导数,也叫导函数值。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。接下来我就给大家分享常见的导数公式,一起看一下具体内容,供参考!
三角函数的导数公式
正弦函数:(sinx)'=cosx
余弦函数:(cosx)'=-sinx
正切函数:(tanx)'=sec²x
余切函数:(cotx)'=-csc²x
正割函数:(secx)'=tanx·secx
余割函数:(cscx)'=-cotx·cscx
反三角函数的导数公式
反正弦函数:(arcsinx)'=1/√(1-x^2)
反余弦函数:(arccosx)'=-1/√(1-x^2)
反正切函数:(arctanx)'=1/(1+x^2)
反余切函数:(arccotx)'=-1/(1+x^2)
其他函数导数公式
常函数:y=c(c为常数) y'=0
幂函数:y=xn y'=nx^(n-1)
指数函数:①y=ax y'=axlna ②y=ex y'=ex
对数函数:①y=logax y'=1/xlna ②y=lnx y'=1/x
什么是导数
设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数。
广告 您可能关注的内容 |