1^2+2^2...+n^2=n(n+1)(2n+1)/6 这条公式怎么来的?求解释

梦幻倩影1
2013-09-14 · TA获得超过103个赞
知道答主
回答量:115
采纳率:0%
帮助的人:47万
展开全部
1^2+2^2+3^2+……+n^2
=(1^2+1)+(2^2+2)+(3^2+3)+……+(n^2+n)-n(n+1)/2
=2[(2*1)/2+(3*2)/2+(4*3)/2+……+n*(n+1)/2]-n(n+1)/2
=2(C22+C32+C42+……+C(n+1)2)-n(n+1)/2,(C22表式C2选2,C32表式C3选2……)
=2(C33+C32+C42+……+C(n+1)2))-n(n+1)/2
=2C(n+2)3)-n(n+1)/2,(C33+C32=C43,C43+C42=C53……)
=(n+1)n(n-1)/3-n(n+1)/2
=[2(n+2)(n+1)n-3n(n+1)]/6
=n(n+1)(2n+1)/6
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式