x平方乘根号下(1减x方)dx 是多少?!定积分的题

教育小百科达人
2019-05-15 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:462万
展开全部

求不定积分∫[x²√(1-x²)]dx[没有上下限,只能是求不定积分]

解:令x=sinu,则dx=cosudu,代入原式得:

原式=∫[sin²ucos²udu=(1/4)∫sin²2udu=(1/4)∫[(1-cos4u)/2]du=(1/8)[∫du-(1/4)∫cos4ud(4u)]

=(1/8)[u-(1/4)sin4u]+C=(1/8)[arcsinx-(1/4)sin(4arcsinx)]+C

=(1/8)arcsinx-(1/16)sin(2arcsinx)cos(2arcsinx)+C

=(1/8)arcsinx-(1/8)[sin(arcsinx)cos(arcsinx)][1-2cos²(arcsinx)]+C

=(1/8)arcsinx-(1/8)[x√(1-x²)][1-2(1-x²)]+C

=(1/8)[arcsinx-x√(1-x²)+2x(1-x²)^(3/2)]+C

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

扩展资料:

求函数f(X)在区间[a,b]中的图像包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。

设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

积分都满足一些基本的性质。在黎曼积分意义上表示一个区间,在勒贝格积分意义下表示一个可测集合。

对于一个函数f,如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限S。

参考资料来源:百度百科——定积分

wjl371116
推荐于2017-12-15 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67412

向TA提问 私信TA
展开全部
求不定积分∫[x²√(1-x²)]dx[没有上下限,只能是求不定积分]
解:令x=sinu,则dx=cosudu,代入原式得:
原式=∫[sin²ucos²udu=(1/4)∫sin²2udu=(1/4)∫[(1-cos4u)/2]du=(1/8)[∫du-(1/4)∫cos4ud(4u)]
=(1/8)[u-(1/4)sin4u]+C=(1/8)[arcsinx-(1/4)sin(4arcsinx)]+C
=(1/8)arcsinx-(1/16)sin(2arcsinx)cos(2arcsinx)+C
=(1/8)arcsinx-(1/8)[sin(arcsinx)cos(arcsinx)][1-2cos²(arcsinx)]+C
=(1/8)arcsinx-(1/8)[x√(1-x²)][1-2(1-x²)]+C
=(1/8)[arcsinx-x√(1-x²)+2x(1-x²)^(3/2)]+C
更多追问追答
追问
是X平方啊
追答
没错啊!是x².

x=sinu,则dx=cosudu,代入原式得:

原式=∫[sin²u[√(1-sin²u)]cosudu=∫[sin²u(cosu)cosudu=∫sin²ucos²udu
哪儿不对?
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
w438719
2013-09-14 · TA获得超过2458个赞
知道小有建树答主
回答量:699
采纳率:33%
帮助的人:220万
展开全部
设x=sint,dx=costdt,
原式=∫[π/2,0](sint)^2(cost)^2dt
=(1/4)∫[π/2,0](sin2t)^2dt
=(1/8))∫[π/2,0](1-cos4t)dt
=(t/8)[π/2,0]-(1/32)∫[π/2,0]cos4td(4t)
=π/16-(1/32)sin4t[π/2,0]
=π/16.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lI50lI
2013-09-14 · TA获得超过9296个赞
知道大有可为答主
回答量:3193
采纳率:23%
帮助的人:1363万
展开全部

更多追问追答
追问
人才!
你是大学老师??
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式