如图,在三角形ABC中,角A等于90度,AB等于AC,角ABC的角平分线BD交AC于点D,CE垂直于BD,交BD的延长线于

点E。猜想CE与BD的数量关系。对不起,字母A与字母B的位置标错了,换个位置... 点E。猜想CE与BD的数量关系。
对不起,字母A与字母B的位置标错了,换个位置
展开
hbc3193034
2013-09-14 · TA获得超过10.5万个赞
知道大有可为答主
回答量:10.5万
采纳率:76%
帮助的人:1.4亿
展开全部
设AB=AC=1,则BC=√2,BD平分∠ABC,由角平分线性质,AD/DC=AB/BC=1/√2,
由比例性质,AD/(AD+DC)=1/(1+√2)=√2-1,
∴AD=√2-1,
由勾股定理,BD=√[(√2-1)^2+1]=√(4-2√2),
BD平分∠ABC,CE⊥BD,
∴△BAD∽△BEC,
∴BD/BC=AD/EC,
∴CE=AD*BC/BD=(√2-1)√2/√(4-2√2)=(2-√2)√(4-2√2)/(4-2√2)=√(4-2√2)/2=BD/2.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式