三角形证明全等的方法
三角形证明全等的方法有以下5种,具体如下:
方法一:边边边(SSS)——三条边都对应相等的两个三角形全等。
这个判定方式其实很好记啦,三角形具有稳定性,三条边都确定了,是不是整个三角形都可以固定下来了呢?这样就具有了唯一性,而这样的两个三边都对应相等的三角形,自然就是全等的。但是需要注意的是三个角都相等的两个三角形不能判定全等哦,只要在脑海中举出几个反例就知道啦!下面给大家举一些利用边边边证明全等的例题。
方法二:边角边(SAS)——两边和它们之间的夹角对应相等的两个三角形全等。
这个判定方式是课本上直接给出的,你可以这么记:同一个角度的有很多,但是确定了夹这个角的两条边的长短,这个就被确定下来了,这是举不出反例的。
方法三:角边角(ASA)——两角和它们之间的夹边对应相等的两个三角形全等。
这个判定方式也是课本上直接给出的,你可以这么记:一个角的边可以无限延长,两个角的夹边被确定以后,就无法延长了,另外两条边则肯定会有交点,这样肯定也能将三角形确定下来。
方法四:角角边(AAS)——两个角和其中一个角的对边对应相等的两个三角形全等。
这个判定方式是由方法三角边角衍生出来的,只要记住了方法三,这个方法就很好记了。三角形的内角和是180,如果两个角都确定了的话,另外一个角度也可以确定下来,这样三个角都是固定的了,那条对边无论如何都是夹在其中两个角中间的,所以也就形成了“角边角”。
方法五:斜边直角边(HL)——斜边和一条直角边对应相等的两个三角形全等。
这个判定方式是利用了勾股定理,如果两条边都知道了,那么利用勾股定理很容易就可以确定第三条边了,这样利用方法一边边边,或者是方法二边角边,都是可以得出两个三角形全等的。但是前提必须是两个直角三角形。