数学求解!!
2个回答
2013-09-14
展开全部
(1)
设x2 > x1, 且x2 = x1 + △ (△ > 0)
则f(△) >1
f(x2) = f(x1 + △) = f(x1) + f(△) - 1> f(x1) + 1 - 1 = f(x1)
所以对于任意x2 > x1, f(x2) > f(x1),
也就是说,f(x)在R上是增函数
(2)
f(4) = 5
5 = f(4) = f(2+2) = f(2) + f(2) - 1
f(2) = 3
f(3m^2 - m - 2) < 3 = f(2)
因为f(x)是增函数,则
3m^2 - m - 2 < 2
3m^2 - m - 4 < 0
(3m - 4)(m + 1) < 0
-1 < m < 4/3
设x2 > x1, 且x2 = x1 + △ (△ > 0)
则f(△) >1
f(x2) = f(x1 + △) = f(x1) + f(△) - 1> f(x1) + 1 - 1 = f(x1)
所以对于任意x2 > x1, f(x2) > f(x1),
也就是说,f(x)在R上是增函数
(2)
f(4) = 5
5 = f(4) = f(2+2) = f(2) + f(2) - 1
f(2) = 3
f(3m^2 - m - 2) < 3 = f(2)
因为f(x)是增函数,则
3m^2 - m - 2 < 2
3m^2 - m - 4 < 0
(3m - 4)(m + 1) < 0
-1 < m < 4/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询