∫(1/sinx)dx=?
2022-12-22 · 百度认证:北京惠企网络技术有限公司官方账号
∫1/sinxdx
=∫sinx/sin^2xdx
=-∫dcosx/(1-cos^2x)
=-∫dt/(1-t^2)
[令t=cosx]
=-1/2∫(1/(t+1)-1/(t-1))dt
=-1/2(ln|t+1|-ln|t-1|)+C
=-1/2ln|(cosx+1)/(cosx-1)|+C
如果一个函数的积分存在,并且有限,就说这个函数是可积的。一般来说,被积函数不一定只有一个变量,积分域也可以是不同维度的空间,甚至是没有直观几何意义的抽象空间。
扩展资料:
对于一个函数f,如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限S。
除了黎曼积分和勒贝格积分以外,还有若干不同的积分定义,适用于不同种类的函数。等价于黎曼积分的一种定义,比黎曼积分更加简单,可用来帮助定义黎曼积分。积分都满足一些基本的性质。以下的 在黎曼积分意义上表示一个区间,在勒贝格积分意义下表示一个可测集合。
一个定积分式的值,就是原函数在上限的值与原函数在下限的值的差。正因为这个理论,揭示了积分与黎曼积分本质的联系,可见其在微积分学以至更高等的数学上的重要地位。
参考资料来源:百度百科——积分
2024-10-28 广告